
302-EMD-001

ECS Maintenance and Development Project

Software Maintenance and
Development Plan

for the EMD Project

October 2003

Raytheon Company
Upper Marlboro, Maryland

Software Maintenance and Development Plan
for the

EMD Project

October 2003

Prepared Under Contract NAS5-03098
CDRL Item #002

RESPONSIBLE AUTHOR

Janine Smith-Carlisle /s/ 10/31/2003
Janine Smith-Carlisle, Deputy, Custom Code Maintenance Date
ECS Maintenance and Development Project

RESPONSIBLE OFFICE

Art Cohen /s/ 10/31/2003
Art Cohen, Manager, Custom Code Maintenance Date
ECS Maintenance and Development Project

Raytheon Company
Upper Marlboro, Maryland

 302-EMD-001

This page intentionally left blank.

 302-EMD-001

Preface

This document is a formal contract deliverable. It requires Government review and approval
within 20 business days. Changes to this document will be made by document change notice
(DCN) or by complete revision.
Any questions should be addressed to:
Data Management Office
The EMD Project Office
Raytheon Company
1616 McCormick Drive
Upper Marlboro, Maryland 20774-5301

Revision History

Document Number Status/Issue Publication Date CCR Number

302-EMD-001 Revision - October 2003 03-0727

 iii 302-EMD-001

This page intentionally left blank.

 iv 302-EMD-001

Abstract

The EMD SDPS Software Maintenance and Development Plan (SMDP), CDRL item 002, DID
EMD-SMDP-2, defines the steps by which the development and maintenance of EMD SDPS
software will be accomplished and the management approach to software development and
maintenance. The SMDP addresses software processes, methods, organizational responsibilities,
tools, configuration management, software quality, metrics, and other activities relevant to
accomplishment of the EMD SDPS statement of work. The SMDP describes software
development processes at a summary level and makes extensive reference to the collection of
EMD SDPS Project Instructions (PIs). The PIs provide details for: 1) processes, such as metrics
collection and inspections; and 2) project standards, such as the format and content for software
development files (SDFs) and coding standards. The SMDP also provides a catalog of
development, test, and delivery services that can be applied to software development and
maintenance. The intent is for this document to provide the overall high-level process and the
PIs and Work Instructions (WIs) to provide the detailed instructions on how EMD SDPS
executes this process.
Keywords: software, process, development, maintenance, training, metrics, standards, COTS,
deployment, configuration management

 v 302-EMD-001

This page intentionally left blank.

 vi 302-EMD-001

Contents

Preface

Abstract

1. Introduction

1.1 Identification .. 1-1
1.2 Scope of Document.. 1-1
1.3 Document Overview ... 1-1
1.4 Relationship to Other Documents.. 1-3
1.5 Review Cycle ... 1-3

2. Related Documentation

2.1 Parent Documents .. 2-1
2.2 Applicable Documents... 2-1

3. Software Organization and Resources

3.1 Software Organization ... 3-1
3.1.1 Software Organization Roles and Responsibilities.. 3-1
3.1.2 Inter-discipline Coordination... 3-2
3.1.3 Software Training .. 3-3

3.2 Resources for Software Development ... 3-4
3.2.1 Software Engineering Environment... 3-4
3.2.2 Software Development Library.. 3-8
3.2.3 Coding and Design Standards.. 3-8
3.2.4 Target Systems... 3-8

4. Software Project Management
4.1 Planning Activities... 4-1

4.1.1 Estimation .. 4-1
4.1.2 Pre-Planning... 4-2
4.1.3 Detailed Planning... 4-3

 vii 302-EMD-001

4.2 Decision Analysis and Resolution ... 4-5
4.3 Risk Management .. 4-5
4.4 Software Metrics.. 4-6
4.5 Supplier Management .. 4-8
4.6 Configuration Management ... 4-9

4.6.1 Configuration Identification.. 4-10
4.6.2 Configuration Control... 4-10
4.6.3 CM/DM Library and Electronic Repository ... 4-10
4.6.4 Software Configuration Management and Release Process 4-11
4.6.5 Configuration Status Accounting.. 4-11
4.6.6 Configuration Audits .. 4-11

4.7 Software Product Evaluation .. 4-11
4.8 Reviews... 4-12

4.8.1 Program Daily Status Reviews ... 4-12
4.8.2 Software Senior Management Review.. 4-13
4.8.3 Peer Reviews... 4-13
4.8.4 Software technical reviews ... 4-13

4.9 Project Process Improvement ... 4-15
4.10 Software quality engineering .. 4-15

5. Catalog of Services

6. Software Development Process

6.1 Development Life-Cycle Approaches.. 6-1
6.1.1 Formal Development ... 6-2
6.1.2 Incremental Development.. 6-2
6.1.3 OSS Development.. 6-2

6.2 Systems requirements development and management .. 6-4
6.2.1 Software requirements management.. 6-5

6.3 Software Architectural/Preliminary Design... 6-5
6.4 Software Detailed Design .. 6-6
6.5 Software Documentation ... 6-6
6.6 Software Code and Unit Test... 6-7
6.7 Software Integration and Test.. 6-8
6.8 Testing Approaches ... 6-8

 viii 302-EMD-001

6.8.1 Regression/Fault Recovery Test .. 6-8
6.8.2 Performance Verification Testing.. 6-9
6.8.3 Acceptance Test ... 6-10

6.9 Deployment Options ... 6-11
6.9.1 Engineering Software.. 6-11
6.9.2 Test Executables ... 6-11
6.9.3 Patches .. 6-12
6.9.4 Drop/Release... 6-12
6.9.5 Transition/Training ... 6-12

6.10 Process Variances ... 6-13

7. Corrective Action Process/Non-Conformance Reports (NCR)
7.1 Prioritization of NCRs ... 7-1
7.2 NCR Process .. 7-1

8. COTS Maintenance/Insertion
8.1 Key COTS Software Upgrade Processes... 8-2

8.1.1 COTS Software Upgrade Analysis Phase.. 8-2
8.1.2 Readiness and Planning Phase ... 8-3
8.1.3 COTS Software Engineering Phase ... 8-3
8.1.4 COTS Software Verification Phase ... 8-4
8.1.5 COTS Software Review and PSR Phase ... 8-4
8.1.6 COTS Software Deployment Phase... 8-4

8.2 COTS Test Executables (TEs) ... 8-4
8.3 COTS Problem Resolution .. 8-5
8.4 COTS Software Tools and Configuration Control Methods ... 8-5
8.5 COTS Software Metrics... 8-5

Abbreviations and Acronyms

List of Tables
1-1. Mapping of CDRL Requirements to SMDP Document.. 1-2
3-1. SDPS Maintenance and Development Tools... 3-5
4-1. Software Performance Metrics .. 4-6
5-1. System Development Services enable cost-effective deployment of new capabilities 5-1

 ix 302-EMD-001

6-1. Software Design Documentation... 6-7

List of Figures
3-1. EMD/ECS ESD Task 1 Organization.. 3-1
4-1. The Raytheon Risk Management Methodology.. 4-5
6-1. Development Tasks and Artifacts.. 6-1

 x 302-EMD-001

1. Introduction

1.1 Identification
This Software Maintenance and Development Plan (SMDP), Contract Data Requirements List
(CDRL) Item 002, whose requirements are specified in Data Item Description (DID) EMD-
SDMP-2, is a required deliverable under the Earth Observing System Data and Information
System (EOSDIS) Core System (ECS) Maintenance and Development (EMD) Project, Contract
NAS5-03098.

1.2 Scope of Document
The EMD Science Data Processing Segment (SDPS) SMDP outlines the steps by which the
development and maintenance of EMD SDPS software will be accomplished and the
management approach to software development. The SMDP addresses software processes,
products, methods, organizational responsibilities, tools, configuration management, software
quality, and other activities relevant to accomplishment of the EMD statement of work. Overall,
the plan for EMD SDPS software development consists of several documents:

• The EMD SDPS SMDP – discusses software development processes at a summary level
• RAYTHEON policies and directives (available on the Raytheon web page) – describes

practices that apply to the Raytheon business unit
• EMD Project Instructions (PIs) and Work Instructions (WIs) and Landover Facility

Policies (available on the ECS Internal Server) – provide details of how Custom Code
Maintenance and other processes on the EMD project are executed

• Related Project Documentation (listed in Section 2 of this document) – provide additional
information about the EMD Project, the software product, and related processes

• Baselined schedules and budgets maintained for the EMD project (available from the
Program Office or Program Controls Department) – provide up to date status regarding
the cost and schedule of software products under development.

These documents are applicable to all software development processes and standards on the
EMD SDPS project unless a formal waiver identifying any deviation or exception is documented
and approved. Note that EMD PIs and WIs take precedence over RAYTHEON policies and
directives since the EMD PIs reflect the tailoring of Integrated Product Development System
(IPDS) and Raytheon Software Operating Instructions (SOIs) to the EMD program, as well as
specific contractual obligations.

1.3 Document Overview
The purpose of this SMDP is to describe the processes that will be used for achieving program
objectives, monitoring performance progress, conducting design reviews, and performing
engineering management on the program.

 1-1 302-EMD-001

This SMDP is organized into the following sections:
Section 1 identifies the document and specifies the purpose of this SMDP in

relation to other planning documents
Section 2 lists all documents referenced in this SMDP
Section 3 describes the software development organization and resources

required to execute the program
Section 4 describes the software management activities required to design,

develop and test the software products
Section 5 Summarizes a catalog of available approaches for requirements,

development, integration, and test
Section 6 provides detailed information about the software engineering

processes, procedures and activities
Section 7 provides detailed information about corrective action processes,

procedures, and activities as related to software maintenance and
management of Non-Conformance Reports (NCRs)

Section 8 provides detailed information about COTS and technology insertion
processes, procedures and activities

Section 9 list of acronyms definitions used in this document
Table 1-1 maps sections of this document to the specific coverage requirements called out by
DID EMD-SDMP-2.

Table 1-1. Mapping of CDRL Requirements to SMDP Document
CDRL Requirement Plan Section

Organizational Responsibilities Sections 3.1.1, Section 3.1.2
Resources Section 3.2
Guidelines and Processes Section 6
Configuration Control Methods Section 4.6
Testing/Verification Section 6.6, Section 6.7, Section 6.8
Quality Section 4.10
Training Section 3.1.3
Automated Tools Table 3-1.
Reviews Section 4.8
Metrics Section 4.4
Documentation Section 6.5
Catalog of Services Section 5

 1-2 302-EMD-001

1.4 Relationship to Other Documents
This plan is related to other plans as listed in section 2. The EMD Program Manager is the
process owner for this plan and is responsible for approval or rejection, both for initial and
changed versions.

1.5 Review Cycle
No updates of this document are planned unless the scope of the program changes or processes
described in this document change. The Program Manager will notify the project team members
of changes verbally or by email.
At anytime during the execution of the program any member of the development team can
recommend a change to the development process. This is done through the normal program
change control procedures. The Software Task Lead reviews the recommended change taking
into consideration program cost and schedule constraints. If the recommended change is
implemented then this plan is updated appropriately and re-approval is required. The Custom
Code Maintenance IPT Lead communicates process changes to the development team.

 1-3 302-EMD-001

This page intentionally left blank.

 1-4 302-EMD-001

2. Related Documentation

2.1 Parent Documents
The parent document is the document from which the Software Maintenance and Development
Plan’s scope and content are derived.

EMD Task 101 Statement of Work for ECS SDPS Maintenance,
August 2003

423-46-02 Contract Data Requirements Document for EMD Task 101 ECS SDPS
Maintenance

2.2 Applicable Documents
The following documents are referenced within the Software Maintenance and Development
Plan, or are directly applicable, or contain policies or other directive matters that are binding
upon the content of this volume.
104-EMD-001 Software Quality Assurance Plan
110-EMD-001 Configuration Management Plan
303-EMD-001 Hardware Maintenance and Development Plan
EMD-RMP-6 Risk Management Plan
108-EMD-001 Program Management Plan
EMD-EDP-23 ECS SDPS Documentation Package

 2-1 302-EMD-001

This page intentionally left blank.

 2-2 302-EMD-001

3. Software Organization and Resources

3.1 Software Organization

Figure 3-1. EMD/ECS ESD Task 1 Organization

The EMD Task 1 program organization depicted in Figure 3-1 supports SDPS maintenance and
development and provides the framework for initiating, planning, and executing additional tasks.

3.1.1 Software Organization Roles and Responsibilities
Figure 3-1 lays out the overall formal organizational structure supporting EMD. The activities of
software development span multiple organizations within the EMD SDPS project. The authority,
roles, and responsibilities of the technical staff responsible for software releases within the EMD

 3-1 302-EMD-001

SDPS Project are described below. The organization charts are posted on a periodic basis to the
EMD Internal Server. The key organizational elements include:

• Program Management, which provides management oversight during all task life
cycle phases, ensures that adequate support services are available for each task,
provides the interface to the customer for cost/schedule issues, provides contractual
direction to the software organization, and receives team inputs for program status
reporting.

• The System Engineering and Integration Team (SEIT) and Architecture Review
Board (ARB), which provide technical oversight over the SDPS architecture and
design, ensure the integrity of the technical baseline across tasks, prioritize incoming
work, optimize resources and schedules across tasks, perform studies and
prototyping, and generate SEPs. Support Services, which provide as-needed access to
key services including cost and schedule tracking, configuration management,
procurement, quality assurance, computer infrastructure, contracts, and safety.

• Support Services, which provide as-needed access to key services including cost and
schedule tracking, configuration management, procurement, quality assurance,
computer infrastructure, contracts, and safety.

• The Sustaining Engineering Team maintains all SDPS components and provides
deployment coordination across all tasks.

The Task 101 lead is a key participant in the Program Management Team (PMT) and has direct
access to all of the program level resources for support activities. Through the Custom Code,
COTS Hardware and Software Maintenance, Operations Deployment, and DAAC Support
Teams, the Task 101 lead has direct control of all of the technical disciplines required to deliver
Task 101 services.

3.1.2 Inter-discipline Coordination
Software development, like other components of EMD, is managed using both integrated product
teams (IPTs) and cross product teams (CPTs).
An Integrated Product Team is an integrated multidisciplinary team of people working together
to meet common objectives and organized around a product or specific service. The IPT is
responsible for the charter, budget, and planning within boundaries established by the program
manager. The IPT Leader is accountable for cost, schedule, product performance, and quality.
As such, the IPT owns the resources to perform the work. The IPT for SDPS maintenance
performs the specific service of sustaining engineering for all SDPS components. Each Task
Order forms its own IPT, and may have subordinate IPTs within it to perform specialized
functions. For instance, within the Sustaining Engineering IPT (Task 101), there are teams to
address custom code maintenance, COTS maintenance, operations deployment, and DAAC
support (see Figure 3.1).
Cross Product Teams (CPTs) are generally not responsible for developing deliverable products
or a one time specific service. They normally provide similar services across many IPTs.
Functions that apply to multiple tasks on the EMD Contract are managed by CPTs. Resources
from the IPTs make up the CPTs as necessary to perform these functions. The following teams

 3-2 302-EMD-001

will be providing support across all EMD Task Orders: Program Management, System
Engineering and Integration Team/Architecture Review Board (ARB), Test and Integration,
Software Installation, Configuration Management, and Infrastructure.
The organizations primarily concerned with software, the Custom Code and COTS Maintenance
IPTs, work closely with the other IPTs within its task and with the CPTs in order to meet
program deliverables and milestones. The integration of the various IPTs and CPTs are detailed
in Section 4, Section 5 and Section 6 of this document.

3.1.3 Software Training
This section addresses the requirements of NASA-STD-2100-91, NASA-DID-M200,
Development Activities Plan, Section 7, Training for Development Personnel Planning. The
requirements of Section 7 include:

• Identifying the personnel requiring training,
• Identifying the types of training by categories of personnel, and
• Identifying the plan for the conduct of training.

A Raytheon training committee exists to provide training to projects. EMD SDPS maintains
representatives on this committee and submits Raytheon training needs based on the types of
training beneficial to EMD SDPS and the needs of the individuals on the project. For example,
software developers can sometimes benefit from training on use of software tools, C++ and/or
Java, object-oriented design, etc. Training needs are assessed at the department level based on
the proficiency of individuals in the department in their jobs, anticipated company business
directions, and individual career goals. Each department’s representative provides these
assessments to the training committee. The training committee then either brings in training or
schedules the individuals for vendor training depending on the circumstances. The EMD SDPS
representatives to the training committee are responsible for providing accurate and timely
information about their training needs. They are also responsible for gathering feedback from
the EMD SDPS departments that they represent.
This process was put into place for the following reasons:

• Ensure that training activities are planned,
• Provide training for developing skills and knowledge needed to perform management

and technical roles,
• Ensure that individuals in the organization receive the training necessary to perform

their roles.
Both process and tool oriented training requirements are identified and coordinated by the
Raytheon training team with the help of the EMD SDPS representatives. As additional training
curriculum is identified, the training curriculum is updated.
A training administrator is responsible for the training program. The roles and responsibilities of
the training administrator include coordination with instructors, scheduling resources for each
course, notifying the representatives of the training committee of course details, ensuring that
materials are available and distributed on time, collecting feedback from each course (course
evaluations), and maintaining records of course conduct.

 3-3 302-EMD-001

3.2 Resources for Software Development
The purpose of this section is to describe the software organization and how it interacts with
other project teams or IPT(s). It describes the resources necessary to perform the software
development processes as defined by the plan. Resources include adequate funding and time,
appropriate physical facilities, skilled people, and appropriate tools.

3.2.1 Software Engineering Environment
The ECS Development Facility (EDF) provides all of the equipment and facilities necessary for
the development and maintenance of EMD software.
Each developer has a dedicated workstation in his or her workspace. This workstation provides
access to all of the tools required to perform software maintenance, including editors, ClearCase,
DDTS, the Software Turnover Tracking System (STTS), Purify, and SDPS system
documentation. These tools as well as others used to monitor EMD are summarized in
Table 3-1.
In addition to his or her individual workstation, a developer also has access to subsystem
development test platforms. These platforms are used to execute components of the system not
yet ready for integrationfor example, components undergoing unit test. These platforms also
are used to host instances of databases and COTS software products for prototype or evaluation
purposes.
The Configuration Management and Infrastructure teams maintain configuration management
control over all platforms used for compiling and building the software. During periods when
upgrades in operating system patches or certain COTS products (such as the RogueWave class
libraries) are being integrated, it will be necessary to divide the compile and build platforms into
two groups, one with the old COTS software baseline and the other having the new baseline.
EMD tools and procedures are used to ensure that all of the builds (developer and software CM)
are performed using the appropriate platforms. The custom software source code is maintained
within ClearCase, which is hosted on a suite of platforms dedicated to this task. These platforms
are carefully tuned to provide maximum performance for the EMD ClearCase implementation.
The Software Integration Lab provides a key resource for EMD software maintainers and
developers. The lab provides multiple software instances of the full SDPS system, referred to as
modes, implemented on multiple separate strings of hardware. There are two hardware strings,
each able to support three modes. In addition, two modes of the SDPS software at the System
Monitoring Center (SMC) will be implemented in the lab. The lab is a shared resource, capable
of running multiple software baselines. Each baseline typically will be allocated two or three
modes so that multiple problems can be investigated independently and concurrently. The
development baseline is hosted in two or more modes whenever long term integration or
development tasks are underway.
The Software Integration Lab is used for debugging problems, testing fixes, integrating fixes at
the subsystem and system level, and regression testing. The lab modes are configured to execute
the currently built baseline under software CM; this baseline will be refreshed automatically
from the overnight builds. With the permission of the lab lead, developers are also able to
execute components of the system within a mode from builds they performed in their personal
views, so that they can compare baseline performance to the behavior resulting from their

 3-4 302-EMD-001

changes. The lab also provides a collaborative environment where developers from one or more
subsystems can work together to solve particularly complex problems.
The EMD Infrastructure CPT provides infrastructure services for the maintenance environment,
such as incremental and full system backups, database administration, system administration, and
implementation of approved upgrades.
In addition to the hardware environments described above, the EDF also provides a robust array
of tools. Table 3-1 lists the major tools used to support custom software, COTS software, and
COTS hardware maintenance and development for SDPS. Some of these tools are used across all
SDPS support activities.

Table 3-1. SDPS Maintenance and Development Tools (1 of 4)
Tool Description

ABC++
A custom Unix tool for extracting HTML and RTF
documentation from C++ programs to generate
documentation and facilitate browsing.

Acrobat Distiller COTS Product used to convert files to pdf
Acrobat Reader COTS Product Used for reading pdf files
Apache Ant Software build tool - JAVA

CDMTS/ECM

COTS Foxpro based Change Management tool
used to process and manage CCRs.
Engineering Change Manager (ECM) is a
planned web-based replacement to manage
CCRs and MRs.

Common Network Tools
System Activity Report, Show the Top
Processes, Multi Router Traffic Grapher, Show
network status, Show tape drive status

COTS Compatibility Matrix Custom tool for tracking COTS upgrades
Crystal Reports COTs used for Remedy reports development
DB Artisan Database software development tool (Oracle)

DBX

DBX is a very useful COTS debugger for
tracking down errors in our custom code. It is
able to track the execution of the program line-
by-line in the source code and report the status
of every variable. Dbx is provided as a
standalone binary for SGI and as part of the
WorkShop package for Sun.

DDTS Problem tracking tool

DeliveryTool Prepares and delivers all ClearCase custom
code and delivers COTS S/W

ECS Assist Custom tool for installing SDPS custom software

Excel Used in generating Sustaining Engineering
Metrics and the OPS Priority List

Forcheck Development support tool
Forte compilers Compiler

 3-5 302-EMD-001

Table 3-1. SDPS Maintenance and Development Tools (2 of 4)
Tool Description

Forte for Java Development support tool

GNU tar A software archiving and extracting tool required
for certain freeware and shareware products

HP C compiler Compiler
HP FORTRAN compilers (77 and 90) Compiler
IBM AIX C compiler Compiler
IBM AIX XL FORTRAN compiler Compiler
IDL for PC and UNIX Science software development tools

ILM Tool

XRP-II based tool used to provide property
management, license management, and
maintenance work order tracking. Currently
implementing ILM under Remedy.

InFocus 508 compliance tool

Java Runtime Environment(JRE)

Offers a reliable environment for deploying Java
applications in the enterprise. The Java Runtime
Environment provides the minimum runtime
requirements for executing a Java technology-
enabled application.

JAWS 508 compliance tool
Jprobe Java memory analyzer
Linux C compiler Compiler
Linux FORTRAN77 compiler Compiler
LoadRunner Automated GUI test driver
Micro-frame Project Manager Scheduling and planning tool

Microsoft Access

Used to monitor and track the Landover
Corrective Action Database; QA activity
database (audits, evaluations and discrepancy
reports) and the Corrective and Preventive
Action Report (C/PAR) database.

Microsoft Excel Used in generating Quality Assurance metrics for
monthly reporting.

Microsoft Office Professional General office tool set
MPM Connect Used to transfer data from MPM to wInsight
MPM for Windows v. 2.1 Primary financial database project control & EVM

MRTG Multi Router Traffic Grapher tool used to monitor
the traffic load on network links

Oracle Developer 2000 Database software development tool (Oracle)
PERL for PC and UNIX Scripting tool

Perl Scripts Mac to Mac Gateway order, SCLI Orders,
Capture Performance Data

PopChart 508 compliance tool

 3-6 302-EMD-001

Table 3-1. SDPS Maintenance and Development Tools (3 of 4)
Tool Description

Primavera Project Planner Scheduling and planning tool
Purify Memory analysis tool

PuTTY

A SSH, Telnet and Rlogin client for 32-bit
Windows systems that provide a memory-
resident agent not available with commercial
secure shell. It is used to establish a secure
connection between Remedy Admin PC and the
Remedy Unix server

Rational Rose C++ Development support tool
Remedy ARS Problem tracking tool

RogueWave

Rogue Wave software is a versatile C++
foundation class library, which is used
throughout custom code. It provides single,
multibyte and
wide character support, time and date handling
classes, multi-thread safe, generic collection
classes, smalltalk-like collection classes.

Scripts

Test uses the following scripts to improve the
quality of test results: Ingest - prep_ingest,
Ingest EOC_trickle, eoc_spec_verify,
Collect_all_ Log_ Files, Vital_stats, EMD
Distribution Metrics

SGI C compiler Compiler
SGI C++ compiler Compiler
SGI Fortran compilers (77 and 90) Compiler
SGI ProDev Workshop Development support tool

Snapshot v3.5.1
Unix application used to capture a pictures of
GUIs with a menu pulled down on a Unix
workstation for documentation purposes

Software Estimation Tool Tool used by custom code maintenance to
estimate effort using SLOC as input.

Software Turnover Tracking System (STTS) Custom tool for tracking merge requests and builds
Sybase Central Sybase monitoring tool
Sybase PowerDesigner Data modeling and design tool
TCL/Tk Scripting tool
Top Performance measurement tool
Tru64 UNIX C compiler Compiler
Tru64 UNIX Developer's Toolkit Development support tool
Tru64 UNIX Fortran compiler (77 and 90) Compiler
VCATS Custom tool for generating purchase orders
Visual Studio Professional Development support tool

 3-7 302-EMD-001

Table 3-1. SDPS Maintenance and Development Tools (4 of 4)
Tool Description

Whazzup
A custom, system monitoring tool used to track
the status of EMD modes and their custom code
servers

wInsight Administrator v. 5.0 Administrator tool for wInsight
wInsight v. 5.0 IFR, PMR, VARs, Earned Value Analysis

WinZip A PC based tool used for compressing and
decompressing files

XML Spy XML schema development tool
XRP-II and Accell Inventory,logistics , and management tool

XV v3.0
Unix application used to capture pictures of
GUIs on a Unix workstation for documentation
purposes.

XVT DSC for AIX, HP-UX, IRIX, and Solaris GUI development tool

3.2.2 Software Development Library
Working technical documentation is retained in the EMD Software Development Library (SDL)
that is located at “ECS SW Development” (an Internal Server). The SDL is the repository for
softcopy documentation and artifacts related to this effort. The artifacts are monitored and
maintained by the Custom Code Maintenance Lead or designee, and becomes part of the
baselined, retained documentation. In addition, per the Peer Reviews, hard copies are required
for components of these artifacts. These hard copy components are stored in a secure area until
they are moved to an offsite storage facility.

3.2.3 Coding and Design Standards
To enable quick response to Non-conformance reports and the integration of new capabilities, it
is critical that developers implement the same coding and design standards. Coding standards
for all custom code (C++ Java, Perl, SQL, C and Fortran) are applied as specified in the Project
Instructions which are located at http://dmserver.gsfc.nasa.gov/proj_instr/sdpi_index.html, an
internal server accessible to EMD project staff and NASA customers.

3.2.4 Target Systems
The target computer systems for planning purposes are Sun Unix servers (e.g., Sun Blade 150,
Sun Blade 2000, Sun V880, or Sun 450) running Solaris 8, SGI servers (e.g., Origin 300, Origin
2000, or Origin 3000) running Irix 6.5.17, and PC workstations running Windows 2000 or Red
Hat Linux 7.3. In addition, Science User ToolKit runs on AIX. The operating systems are
updated based on vendor end-of-life requirements or specific project needs.

 3-8 302-EMD-001

http://dmserver.gsfc.nasa.gov/proj_instr/sdpi_index.html

4. Software Project Management

This section defines the following processes to monitor and control the software project:
planning activities and approval processes; metrics; software estimation, scheduling and
tracking; cost and pricing review and approval; decision analysis and resolution, risk
management and supplier management, configuration management, software product evaluation,
and reviews (program and peer).

4.1 Planning Activities
System modifications require a Configuration Change Request (CCR), a System Enhancement
Proposal (SEP) or a Task Plan Request (TPR). They typically represent studies, new custom
software capabilities, hardware purchases, and documentation updates. The process works much
the same as for emergency changes except for the timeline to completion.
The objectives of the planning process are to establish the scope, technical approach, resource
allocations and budget for new work and to define the detailed schedule of events and
dependencies. Planning is initiated when the Program Manager appoints a Planning Group or
Task Lead to estimate or plan new work.
The three distinct aspects of planning are: 1. estimation 2. pre-planning and 3.detail planning.
The Planning Process Project Instruction captures details of each of these planning efforts. This
entire planning effort concludes between 10 and 20 working days of the request; the NASA
requirement for response to a TPR is 25 working days. The work is ready for immediate
execution when authorization is received from the customer.

4.1.1 Estimation
The Estimation Process has three distinct aspects:

• Developing and understanding requirements
• Developing Basis of Estimates (BOEs)
• Generating prices.

4.1.1.1 Developing and Understanding Requirements
Requirements are developed by the SEIT. The SEIT:

• Ensures that requirements are understood and allocated to appropriate software
products

• Documents the software requirements to be used for estimation
• Uses the software requirements to identify and refine the list of software products to

be estimated.

4.1.1.2 Developing BOEs
The Task Lead is responsible for coordinating the development of the work estimate across all
WBS elements. For the software-related portion of the work, the Task Lead may appoint a

 4-1 302-EMD-001

Software Estimation Lead. The Software Estimation Lead is responsible for generating the
BOEs. The Software Estimation Lead (SEL) derives the BOEs using the following steps.

• Using requirements developed by SEIT, the SEL works with impacted subsystems to
derive estimates pursuant to Raytheon’s Estimating Software Size Landover Facility
Policy.

• Software component estimators prepare Delivered Lines of Code (DLOC) estimates
using the EMD Software Estimation Tool, including inputs regarding the Source
Lines of Code (SLOC) to be developed, modified, or reused, as well as difficulty
factors assumed. Along with the DLOC worksheet, estimators include the Basis of
Estimate (BOE), a list of assumptions and constraints that are relevant to the estimate,
as well as a list of risks that may affect the estimate (e.g., risk of using a particular
technical approach, or of not having adequately trained staff). These estimates and
files are sent to the Software Estimation Lead, who collects them into a single
package for review.

• The Software Estimation Lead schedules a Work Estimate Peer Review to examine
all of the estimates and difficulty factors.

• The Software Estimation Lead records the SLOC values agreed on in the Work
Estimate Peer Review on the EMD Software Estimation Tool to provide the estimate
of effort (hours) and schedule (days) to be used in the planning process. The estimate
and the other outputs (assumptions, risks), are sent to the System Estimation lead,
who is coordinating the program-wide estimate for this functionality. The EMD
Software Estimation Tool is available on the ECS Project Forms web page.

The Software Estimation Lead files the SLOC/effort estimate and associated files in the software
repository.

4.1.1.3 Generating Prices
The Task Lead coordinates with the program control analyst (PCA) to generate pricing. Using a
detailed listing of resources by grade level, the PCA generates a pricing run. The pricing and
BOE are reviewed with program management.
If revisions are required to a proposal estimate, then the Task Lead and program management
ensure that adequate funding and resources are available to perform the software engineering and
support for each software development effort and for software maintenance. Revisions to the
software effort estimate are reviewed with senior software management. A history of software
sizing estimates, effort estimates, schedules and all assumptions for the each program are
retained in the Software Development Library (SDL) .

4.1.2 Pre-Planning
There are two steps in the initial planning process. The first step is to analyze and develop
planning and processing inputs. The purpose of this step is to determine the best methodology
for planning and/or estimating new work based on a CCR, SEP or a Task Plan Request. The
second step is to review and approve planning and process inputs. The purpose of this step is to
review and approve the planning and process inputs from the initial estimation effort to ensure
that it is appropriate to proceed. The ARB is the principal approving authority for all pre-

 4-2 302-EMD-001

planning activities and documents prior to proceeding to detail planning. If the inputs are
approved by the ARB, detail planning can begin. The PM also provides authority to the ARB to
approve start of low risk, start up activities.

4.1.3 Detailed Planning
Detailed planning is usually reserved for large, complex changes. The Task Lead organizes a
team from the technical and business disciplines to establish the scope of the work, the technical
approach, the required resources, and budget requirements. The Detailed Planning Process is
documented in the Planning Process PI. Three process models are used for detail planning: one
time, incremental and expedited.

4.1.3.1 One Time Planning Process
The One Time Planning Process is used for a new effort where the requirements are clear; an
assessment of low risk that the analysis and design phase will affect the remaining work; and
also low risk that the budget and schedule constraints will influence the scope of work. A single
detailed plan is developed at the start of the subtask to include all activities to be baselined. The
One Time Planning Process can be tailored. Critical steps in this planning model include.

• Hold Kickoff Meeting - The purpose of this step is to organize the planning team.
Assignments are described and the inputs are reviewed.

• Create Plan for the Plan - The purpose of this step is to develop a plan of the activities
required to plan the task or subtask. The plan should be used to coordinate and track
the status of the planning tasks as they are executed. If this process is being used to
plan work that has not been approved, the plan for the plan contains the plan of
activities required to complete the Basis of Estimate.

• Develop Technical Approach - The purpose of this step is to develop a technical
approach for the tasks/subtasks. If this process is being used to plan work that has not
been approved, then a technical approach for the Basis of Estimate is developed.

• Develop/Reassess Estimates - The purpose of this step is to develop and/or reassess
an estimate. The estimate must be justifiable, consistent, and repeatable to support
planning.

• Develop Resource Loaded Schedule - The purpose of this step is to develop a
schedule that is loaded with resources. If the planning effort is for work that has not
been approved, then a high level schedule with potential resources to perform the
work is all that is needed for this step.

• Develop Budget and Resources - The purpose of this step is to allocate budget and
resources for the task/subtask. If the planning effort is for work that has not been
approved, then a PC Pricing file is used.

• Obtain Commitment to Plan - The purpose of this step is to obtain Management
“Buy-In” to plan.

 4-3 302-EMD-001

4.1.3.2 Incremental Planning Process
The Incremental Planning Process is used for new effort where the requirements are unclear; an
assessment of high risk that the analysis and design phase will impact the remaining work; or
high risk that the budget and schedule constraints will influence the scope of work. An
incremental phased approach to planning will allow multiple phases to be planned over time. At
the start of a subtask, the first phase is planned in detail and the remaining phases are planned at
a high-level. Toward the end of each phase, a detailed plan is created for the subsequent phase
and the high-level plan for the remaining phases is updated. This process can be tailored.
The following steps are performed when executing the Incremental Planning Process:

• Hold Kickoff Meeting - The purpose of this step is to organize the planning team.
• Create Plan for the Plan - The purpose of this step is to develop a plan of the activities

required to plan the task or subtask. The plan should be used to coordinate and track
the status of the planning tasks as they are executed.

• Develop Technical Approach - The purpose of this step is to develop a technical
approach for the tasks/subtasks.

• Reassess Estimates - The purpose of this step is to reassess the estimate developed in
the estimation phase. The estimate must be justifiable, consistent, and repeatable to
support planning. The estimates are developed for the current phase that is being
planned in detail.

• Develop Resource Loaded Schedule - The purpose of this step is to develop a
schedule that is loaded with resources. The schedule is being developed for the phase
that is being planned in detail.

• Develop Budget and Resources - The purpose of this step is to allocate budget and
resources for the task/subtask. The budget and resources are being developed for the
phase being planned in detail.

• Develop and Refine the High Level Plan - The purpose of this step is to develop the
high level plan for the subsequent phases of the task/subtask. This step is executed for
the subsequent phases of a task/subtask that have not been planned in detail. The
budget for the phases in the high level plan is held in planning packages. The
schedule for the phases in the high level plan is not baselined.

• Obtain Commitment to Plan - The purpose of this step is to obtain Management
“Buy-In” to plan.

• Execute Phase - The purpose of this step is to execute the work planned in detailed. If
there are more phases in the high-level plan, plan the next phase in detail.

4.1.3.2 Expedited Planning Process
The Expedited Planning Process is used for low risk activities that have minimal dependencies
with other activities. Minimal milestones are planned. This process can be tailored. The
following steps are performed when executing the Expedited Planning Process:

• Obtain Commitment to Plan - The purpose of this step is to obtain Management
“Buy-In” to plan.

 4-4 302-EMD-001

• Develop Budget and Resources - The purpose of this step is to allocate budget and
resources for the task/subtask.

4.2 Decision Analysis and Resolution
The System Engineering and Integration Team (SEIT) is the key EMD organizational element
that provides technical oversight over the SDPS architecture and design. The SEIT provides
core members to the Architecture Review Board (ARB), which reviews planning inputs and
technical approaches that require formal decision analysis. The ARB ensures the integrity of the
technical baseline across subsystems, environments, DAACs, and EMD tasks. The CE, who is
responsible for convening meetings, composition of the review board, keeping and distributing
minutes, and maintaining the ARB repository of proceedings and directives, chairs the ARB.

4.3 Risk Management
A well-structured continuous risk management approach is in place that meets the guidelines of
NPG 7120.5A (see Figure 4-1). Risk factors are an integral part of our planning process for
system enhancements. Factors such as technical complexity, staff experience and availability,
external dependencies, and COTS integration aspects are considered in costing and scheduling
from the very start. As a result, potential risks are identified and addressed early in the process
and tracked throughout the development process until they can be closed.

Figure 4-1. The Raytheon Risk Management Methodology

 4-5 302-EMD-001

Raytheon fully documents its risk management program and methodology in a Risk Management
Plan (RMP) that will be delivered within 4 months of contract award in accordance with DID
EMD-RMP-6. Our methodology encompasses five major stages as depicted in Figure 4-1. It
addresses technical, cost, or schedule risks, as well as those associated with methods, techniques,
procedures, processes, equipment, and subcontracts related to the EMD contract. The RMP
covers risk strategies involving foreign sources, unauthorized technology transfer, and includes a
section on disaster recovery. The EMD RMP incorporates the Risk Management Methodology
Project Instruction and Risk Assessment and Mitigation Procedures Work Instruction currently
in use on EMD.
Our process allows for any individual on EMD to identify a risk. Responsibility for risk
management and mitigation, on the other hand, rests with the SEIT (see Figure 4.3). The SEIT
risk coordinator (RC) collects and monitors the risk inputs, and conducts risk management
meetings that are attended by the PMT and chaired by the PM. New risks are assessed as to
probability and impact; based on this assessment, a risk index is calculated for each risk. Risks
are characterized as high, medium, or low and are ranked based on their risk index. Rankings are
used to allocate resources for mitigation efforts. The RC will maintain a central repository of risk
data and make it accessible to the EMD Program for planning and tracking. For each risk, a
responsible individual (RI) is designated by the SEIT to lead activities related to that risk. The RI
presents the status of open risks and ongoing mitigation activities weekly at customer status
reviews. Risks with a high-risk index are reviewed with NASA at the monthly Program
Management Review (PMR) meeting.

4.4 Software Metrics
The process of software maintenance/development can be effectively managed (monitored and
improved upon) only if there is an objective means of measuring the quality of the EMD work.
In order to ensure that EMD work is aligned with NASA goals and priorities, a comprehensive
set of metrics has been selected. These metrics enable the EMD contractor and NASA
management to evaluate and improve the quality, productivity, and effectiveness of products and
services, and to measure Raytheon’s performance on the EMD contract. Table 4-1 presents
Raytheon’s understanding of key NASA goals and summarizes our proposed metrics related to
each goal. The metrics were selected to provide a quantitative measure of success. They capture
the core characteristics of cost performance, schedule performance, mission success, and the
quality and timeliness of deliveries to the field. Those metrics that we propose to jointly share
with other stakeholders (e.g., DAACs and instrument teams) are indicated by the word “Shared”
in that column.

Table 4-1. Software Performance Metrics (1 of 3)
User Satisfaction

Metric Description Sys
Perf

Order Response Time Average order fulfillment response time shows the average time
required to complete an order.

Shared

Severity 1 NCRs fixed by
Engineering Software

Average number of days from MR to delivery for Severity 1 NCRs
for engineering software (ES)

X

 4-6 302-EMD-001

Table 4-1. Software Performance Metrics (2 of 3)
User Satisfaction (cont.)

Metric Description Sys
Perf

Severity 1 NCRs fixed by
Test Executables

Average number of days from MR to delivery for Severity 1 NCRs
for test executables (TEs)

X

Top 25 NCRs Fixed Average number of days from MR to delivery for top 25 NCRs on
Program Priority List

X

Sustaining Engineering
Metric Description Sys

Perf
Sustaining Engineering Percentage of mission milestones achieved during the month X

Information Flow
Metric Description Sys

Perf
Information Flow Down to
DAACs

Percentage of patches and TEs for which the DAACs require
additional information

X

DAAC Information Rating of accuracy and consistency of basic MR information
received from DAACs on a scale of 1 to 5

Shared

DAAC Top 25 Ranking Changes in DAAC’s relative ranking of top 25 NCRs Shared
NCR Problem Resolution Effectiveness

Metric Description Sys
Perf

NCR Failure Rate at DAACs Percentage of NCR fixes that failed at the DAACs X
NCR Failure Rate During
Test

Percentage of NCR fixes that failed during test X

Installation NCRs for TEs Number of installation NCRs generated for TEs from DAACs X
Installation NCRs for Patches Number of installation NCRs generated for patches from DAACs X
Installation NCRs for COTS Number of installation NCRs generated for COTS upgrades from

DAACs
X

Number of New NCRs from
Patches

Number of new NCRs resulting from patches from DAACs
(break/fix ratio)

X

DAAC Effectiveness
Metric Description Sys

Perf
DAAC Test Executable
Installation

Average time in days for DAACs to test and install a TE into
operations

X-
Shared

DAAC Patch Installation Average time in days for DAACs to test and install a patch into
operations

X-
Shared

DAAC NCR Test/Verify Average time in days for DAAC to test and verify NCR after receipt
of patch or TE

X-
Shared

DAACs Operation
Metric Description Sys

Perf
DAAC Ingest Performance Number of data granules and volume ingested at the DAACs versus

expected for the period
X-

Shared

 4-7 302-EMD-001

Table 4-1. Software Performance Metrics (3 of 3)
DAACs Operation (cont.)

Metric Description Sys
Perf

DAAC Distribution
Performance

Number of data granules and volume distributed at the DAACs
versus expected for the period

X-
Shared

DAAC Production
Performance

Number of data granules and volume produced at the DAACs versus
expected for the period

X-
Shared

System Reliability Availability of system functions versus expected for the period
(software reliability)

X-
Shared

Costs/Schedule Effectiveness
Metric Description Sys

Perf
Schedule Performance Index Shows the budget of work performed (BCWP) / budget of work

scheduled. This provides an indicator of the efficiency of the
progress being made towards the scheduled work.

X

Cost Performance Index Shows the budget of work performed (BCWP) / actual cost of work
performed (ACWP). This provides an indicator of the efficiency of
the progress being made towards the estimated costs.

X

In addition, Raytheon evaluates metrics relating to software size, software staffing, computer
resource utilization, fault density, software volatility, software reliability, design complexity and
fault type distribution.

4.5 Supplier Management
Raytheon’s Supply Chain Management (SCM) Department is responsible for subcontract and
procurement management oversight. The SCM leader and subcontract administrators (SCAs) are
responsible for the overall administrative management of the subcontractors and vendors
supporting the EMD Program. The SCAs are responsible for the day-to-day administration of the
Subcontract Agreement and task orders. The SCM leader and the SCAs are the only individuals
that can authorize contractual changes to subcontract agreements. In support of EMD, the SCM
staff will issue IDIQ subcontracts, similar to the prime contract, with the ability to issue CPAF,
Time and Material, and Firm Fixed Price task orders. The type of task order to be issued to a
subcontractor will depend on the scope and complexity of work to be performed for a specific
task.
The SCAs issue the initial subcontract agreements, subsequent task orders against those
agreements, and modifications to both the subcontract agreements and task orders. All
subcontract agreements and task orders include all required prime contract flow-downs, comply
with public law and federal regulations, and are issued in accordance with Raytheon’s
Government approved policies and procedures. The SCAs also oversee invoice processing,
funding requirements, perform cost and price analysis on proposals, obtain technical evaluations,
ensure Government consent requirements are met, perform “make or buy” analyses, conduct
negotiations, and interact with the task leaders, as required.

 4-8 302-EMD-001

Those subcontractors that qualify under the prime contract requirements will submit Monthly
Progress Reports (EMD-MPR-10), Contractor Cost Reports (EMD-533-11), and monthly
Contractor Manpower Reports (EMD-MCMR-12) to their assigned Raytheon SCA for
incorporation into the prime contract deliverables, as appropriate.
The SCAs hold monthly Subcontractor Progress Review (SPR) meetings with each of the
subcontractors. In addition to the SCA and the subcontractor’s program manager and staff, these
meetings are attended by the Raytheon EMD PM, task leaders, SCM lead, and financial lead. In
these meetings, we identify issues that may affect the subcontractor’s ability to perform, meet
schedule, or meet costs; identify long and short term risk areas; and provide feedback or
technical direction. The SCA and subcontractor’s program manager meet at least once a week to
ensure prompt resolution of actions items from these meetings.
The SCM leader oversees the entire subcontractor award fee evaluation process. The SCM leader
ensures that each subcontractor is issued a Performance Evaluation Plan as part of the basic
subcontract agreement. The SCAs, along with the task leaders, draft and issue evaluation criteria,
specific for each subcontractor, prior to the start of an award fee evaluation period. At the
conclusion of the award fee period, the SCA requests that the subcontractor submit its self-
evaluation. This evaluation, with the criteria, is routed to the Program Management Team and
task leaders for inputs. Upon receiving the comments, a Performance Evaluation Board (PEB),
which includes the SCM leader, the EMD PM, task leaders, SCAs, program controls lead, and
quality lead meets. The EMD Program Manager is the Fee Determining Official.
The Raytheon task leaders perform as the SCM technical representative. Within the scope given
to them by the program manager, the Raytheon task leaders provide daily direction and
coordination with the subcontractors that provide support to them. The task leaders ensure that
activities between and among Raytheon and subcontractors’ staff are coordinated and efficient.

4.6 Configuration Management
This section covers plans and processes for configuration management (CM) of EMD SDPS
software. Software configuration management is the responsibility of the Configuration
Management Cross Product Team, as identified in the organization structure of the ECS/EMD
Program. The Configuration Management Plan for the EMD Program, CDRL #019, EMD
document number 110-EMD-001, contains a complete description of the CM process and the
services provided that support software CM requirements. These services include:

• Identification of all SDPS configuration-controlled items, including current
version/release information for software and documentation.

• Configuration control and change management, including receipt, processing, review,
disposition, implementation, and verification of baseline changes, including internal
and external interface changes, establishment of a CCB, and management of changes
flowing between the EMD and NASA CCBs. These changes may include
Modification Requests (MRs) introduced as a function of EMD, as well as the
standard Configuration Change Requests (CCRs).

• Management of a central CM/DM library and electronic repository, including
physical and electronic retention and control of baselines for SDPS software, system
hardware and software configurations, procedures, standards, and documentation.

 4-9 302-EMD-001

• Implementation of an engineering release process for formal approval and CM release
of all delivered SDPS software, hardware, and documentation.

• Status accounting and reporting of SDPS hardware and software information.
• Configuration audit and verification, including ensuring the integrity of hardware and

software, as specified in controlled configuration documentation.
The following subsections provide a discussion of the key CM activities that are required to
satisfy software CM requirements.

4.6.1 Configuration Identification
The configuration items controlled under CM are documented in EMD System Baseline
Specification (905-TDA-001). This document defines the configuration items for the EMD
contract, including all technical documentation, commercial off the shelf software, custom
software, COTS hardware, operating systems (O/S), and O/S patches, databases, and technical
documentation. Refer to Project Instruction CM-1-042, Configuration Identification, for
configuration item definitions.
The EMD custom code components are not listed in the EMD System Baseline Specification.
The ClearCase tool contains all the information about all the custom code files and versions. The
Configuration Management Plan and CM project instructions describe the use of ClearCase to
control source code, generate the build products, prepare, and deliver custom code software.

4.6.2 Configuration Control
Configuration control is maintained through Configuration Control Requests (CCRs) and
Configuration Control Boards (CCBs). Changes are adequately defined, assessed for technical,
cost, and schedule impacts by the EMD office(s) and formally considered by the appropriate
CCB. Only approved changes are incorporated in the appropriate baseline.

4.6.3 CM/DM Library and Electronic Repository
CM is responsible for establishing and controlling the COTS Software Library . This library is
the repository for vendor-supplied COTS software, and for COTS software that has been tailored
for use on the EMD program. CM ensures that CCB-authorized material is archived and stored
in the library, and that no unauthorized changes are made to established software baselines. The
Data Management Office (DMO) controls hardcopy material after approval by a CCB.
CM is responsible for maintaining accountability for materials in the SDL, and for making and
releasing copies to internal and external users.
The Configuration Management Plan for the EMD Project describes the process and tools for
maintaining the SDL. The ClearCase tool provides for the management of the code. The CM
organization maintains scripts in addition to ClearCase to provide automated controls for
baseline maintenance and to help the developers.
Developers use ClearCase during the development of the software from design through unit test.
After the unit test phase, a merge request is submitted and approved. Upon merging the code to
the appropriate baseline, the CM group builds the software at the system level for use in the
integration lab. When the release or patch is ready for delivery outside of the EDF, the CM

 4-10 302-EMD-001

group delivers the release or patch using automated processes. Code or executables are only
delivered to the sites through the CM organization.

4.6.4 Software Configuration Management and Release Process
EMD SDPS software follows the processes and flow described in CDRL #019, 110-EMD-001,
Configuration Management Plan, as it migrates from the individual programmer levels, to the
segment level, and then to the EMD SDPS system-level. In addition, software migrates from
each EMD SDPS release to its following release in a controlled manner. The Release Notes
Document, which documents the contents of a release, is an integral part of all release deliveries.
Functional Configuration Audits (FCA) and Physical Configuration Audits (PCA) verify all
formal deliveries. Detailed information on FCAs and PCAs can be found in the Configuration
Management Plan, 110-EMD-001.

4.6.5 Configuration Status Accounting
Configuration status accounting consists of recording and reporting information about the
configuration status of the EMD SDPS Project's documentation, hardware, and software
products, throughout the Project life cycle. Periodic and ad hoc reports keep ECS SDPS Project
management and NASA informed of configuration status as the Project evolves. Reports to
support reviews and audits are extracted as needed. CM maintains CM Web pages.
Configuration Status Accounting is described in CDRL 110-EMD-001 Configuration
Management Plan. Referenced project instructions provide additional details on configuration
status accounting.

4.6.6 Configuration Audits
Configuration auditing is the means by which management ensures that both the technical and
administrative integrity of the product are being met. Real-time audits are conducted to verify
that CCRs are correctly executed. These audits compare the baseline Technical Documentation
to the “as built” configurations of managed EMD hosts. Differences are noted and resolved.
The audit process consists of CM self-audits and ECS SDPS Project internal audits. Formal
audits are prerequisites to formal approval of the "as-shipped" configuration. They provide
verification that each CI in the baseline being shipped is logically related to the corresponding CI
in preceding baselines. Configuration audits (including FCAs and PCAs) are described in the
Configuration Management Plan for EMD, 110-EMD-001.

4.7 Software Product Evaluation
The Quality Assurance organization is responsible for ensuring that EMD software work
products are evaluated at various stages throughout the development lifecycle. The purpose of
work product evaluation is to objectively evaluate adherence to project processes against its
process description, standards, and procedures, and address non-compliance. This is
accomplished via engineering and development peer review, in accordance with a documented
process. For the EMD Program, software work products include requirements, interfaces, and
operations concepts, documented as Tickets; design artifacts, code, unit and integration tests, and
system level verification and validation tests. Quality Assurance Engineers (QAE) and other
review participants are notified by the engineering organization and provided with appropriate

 4-11 302-EMD-001

review materials. The QAE performs a dual role in the peer review process. First, as a reviewer,
providing input on product content and quality. Secondly, as an auditor, evaluating the conduct
of the peer review and its related activities with regard to adherence to applicable standards and
documented procedures.
QA may monitor various test activities, including unit test and integration test demonstrations
prior to turnover for system level test, as appropriate. QA also attends and monitors formal tests
that may be witnessed by independent verification and validation (IV&V) representatives. QA
performs audits of the test-related processes and evaluations of test artifacts, including test plans
and procedures, test results and status maintained in test folders.
Quality Assurance engineers document their audit and product evaluation results in the Quality
Assurance Tracking Database, which is access-restricted to QAEs. In addition, a physical records
repository is maintained and includes the complete audit records, i.e., formal audit or product
evaluation report, Deficiency Reports (for non-conformances), QA checklists, and other artifacts
acquired as objective evidence.
Please refer to the Software Quality Assurance Plan, (104-EMD-001) for further information
about the Quality Assurance organization and its activities.

4.8 Reviews
This paragraph describes program reviews and meetings for the project. Minutes of all meetings
are taken, including attendance, and distributed to the review participants and other affected
groups. All action items taken during reviews are tracked to closure. The status information is
saved in the SDL . The minutes from reviews and a copy of the material presented are retained
at least through the duration of the software development effort.
Status reviews include the following information as appropriate:

• Software schedules
• Cost
• Accomplishments, plans, issues
• Results of any audits or reviews
• Risks
• Metrics
• Action item status
• Noncompliance issues

4.8.1 Program Daily Status Reviews
Chaired by the Program Manager, this review includes the program’s functional managers and
support group managers: risks, schedule status, action items, and other identified items are the
nominal topics. Each EMD task is reviewed weekly on a designated day. NASA representatives
are invited to attend so that they can provide comment and direction on specific activities as
needed.

 4-12 302-EMD-001

4.8.2 Software Senior Management Review
The software engineering manager will conduct periodic Software Management Reviews;
frequency will depend on the existing work level but nominally on a quarterly basis. The
software manager will define the attendees and schedule the meeting, and will be responsible for
the agenda and minutes.

4.8.3 Peer Reviews
The Custom Code Maintenance Lead or designee coordinates the peer review of selected
artifacts during the development of the software product. The Peer Review PI (located on an
internal server) is used to critique walkthroughs. The findings and decisions from peer reviews
are recorded in the SDL and action items are written and tracked to closure as necessary.
Procedures for planning, conducting, and the subsequent analysis of the peer review data can be
found in Peer Reviews WIs (located on an internal server). The type of Peer Review work
instructions and artifacts are dependent upon the type of peer review. Detailed peer review
information is included in Section 6 (Software Architectural/Preliminary Design, Software
Detailed Design and Software Code and Unit Test) of this document.

4.8.4 Software technical reviews
Technical reviews include regular technical dialog with the DAACs, the instrument teams, the
user community, and NASA domain experts throughout the life cycle. In addition, formal
technical reviews will be required at critical phases in the development and maintenance life
cycle in order to assess the readiness for proceeding to the next phase. Reviews will generate
feedback that will improve the quality of future EMD products and services.
The technical reviews cover the full range of maintenance and development activities defined as
follows:

• Corrective Maintenance – Changes necessitated by actual errors (i.e. ‘bugs’), or design
deficiencies. Corrective maintenance consists of activities normally considered to be
error correction required to keep the system operational. By its nature, corrective
maintenance is usually a reactive process. Corrective maintenance is related to the
system not performing as originally intended. The three main causes of corrective
maintenance are (1) design errors, (2) logic errors, and (3) coding errors.

• Adaptive Maintenance – Changes initiated as a result of changes in the environment in
which a system must operate. These environmental changes are normally beyond the
control of the maintainer and consist primarily of changes to the: (1) rule, laws, and
regulations that affect the system: (2) hardware configuration, e.g., new terminals, local
printers, etc.: (3) data formats, file structures: and (4) system software, e.g., operating
systems, compilers, utilities, etc.

• Perfective Maintenance – (Also known as enhancements and upgrades) All changes,
insertions, deletions, modifications, extensions, and enhancements made to a system to
meet the evolving and/or expanding needs of the user. It is generally performed as a
result of new or changing requirements, or in an attempt to augment or fine-tune the
existing software/hardware operations/performance. Activities designed to make the code
easier to understand and to work with, such as restructuring or documentation updates

 4-13 302-EMD-001

and optimization of code to make it run faster or use storage more efficiently are also
included in the Perfective category.

Each of the following technical reviews generates a final documentation package delivered to the
Government within 30 days of the event. The final package contains attendance lists, action
items (AIs), disposition of the AIs, and any updates to material presented at the event in response
to AIs.
Incremental Release Review. An Incremental Release Review (IRR) is performed during the
requirements analysis phase of adaptive and perfective tasks when specified, and are attended by
the Raytheon Team, the Government, DAAC staff, representatives of the science end-user
community, and external interface representatives when applicable. Prior to the IRR, the task
leader engages the SEIT and DAACs (or other stakeholders) in the analysis of the new
requirement. The primary artifact of the analysis is a ticket for each new capability, containing
the requirements, operations concept, derived requirements, transition considerations, high-level
component requirements, operations and end user scenarios, and test verification criteria for
functional, performance, and fault condition testing. The ARB appoints an engineer responsible
for the generation of each ticket. Requirements analysis is a collaborative effort led by the
responsible engineer who integrates the perspectives of the DAACs, NASA, and other
stakeholders into the development of the ticket. Risks for each ticket are analyzed by the ARB.
In addition, the task leader develops a task schedule that will be integrated into the program
master schedule by the SEIT and presented at the IRR. Action items are recorded by the Task
Lead. Action item status is reviewed by the PMT and retained for later use in the Release Status
Review.
Consent to Ship Review. The purpose of the Consent to Ship Review (CSR), DID EMD-CSR-
13, is to assess the readiness of the EMD Team and the DAAC to ship and accept the delivery.
The CSR is performed when specified for major perfective changes that require a site readiness
assessment prior to installation. For each CSR, a software and hardware physical configuration
audit (PCA) is performed to ensure that there are no configuration discrepancies that might
interfere with successful installation of the delivery. Action items are accepted from attendees of
the review, consisting of DAAC operations and systems engineering staff and the Government.
The Government grants approval to proceed only after the EMD Team has demonstrated
satisfactory disposition of all action items.
Pre-Ship Review. The purpose of the Pre-Ship Review (PSR), DID EMD-PSR-14, is to review a
final delivery package prior to its turnover to CM and subsequent delivery to the sites. The EMD
Team performs a PSR for custom software patches and releases and COTS hardware and
software upgrades. Installation instructions are reviewed for completeness by the DAAC staff.
For most major adaptive and perfective releases, the PSR is the successor to the CSR. For other
deliveries, which do not require the PCA associated with a CSR, the predecessor to the PSR is
the installation, verification, and regression testing of the delivery at the EMD development
facility. Action items are recorded from the PSR and retained for incorporation into the Lessons
Learned Review (LLR).
Lessons Learned Review. The purpose of the LLR, DID EMD-LLR-15, is to provide the
Raytheon Team, the Government, and the DAACs with a forum in which to improve the quality
of future release support. An LLR will be performed as specified for perfective tasks. The

 4-14 302-EMD-001

Raytheon Team will collect metrics following the deployment of a capability in order to measure
the effectiveness of the PSR process. An example of such metrics is the number of requests for
additional installation instruction information made by the DAACs following the PSR. The
responsible engineer for the LLR will be a member of the PMT. LLR artifacts will be retained
for use in planning future releases.
Release Status Review. The purpose of the Release Status Review (RSR), DID EMD-RSR-16, is
to revisit the effectiveness of the performance of SDPS. The RSR will be performed annually
unless a CSR has been performed in the last 12 months. Defects found after deployment,
performance impacts, and impacts to DAAC productivity metrics will be measured and analyzed
for application towards process improvements.

4.9 Project Process Improvement
Process improvement in SDPS custom software maintenance and development will be driven by
the collection and analysis of metrics, and by the implementation of improvements and
enhancements. Process improvements will be accomplished through the use of Raytheon’s Six
Sigma process improvement methodology.
A major source for ideas for process improvements is the Lessons Learned session, which is held
after every significant software delivery (See Section 4.8). The results of the lessons learned
activity typically leads to the initiation of Six Sigma efforts to resolve the major issues identified
by the lessons learned activity. The Six Sigma Process improvement activity initiated from the
lessons learned should be short enough in duration so that its results can be implemented prior to
the next significant delivery

4.10 Software Quality Engineering
Software Quality Engineering (SQE) for the EMD Program will be performed by the Quality
Assurance organization in accordance with the Software Quality Assurance Plan (SQAP).
Quality Assurance will conduct process audits, product evaluations and monitor engineering,
development, deployment, and maintenance activities. Examples of such activities include, but
are not limited to program planning and tracking, design and development, hardware and
software maintenance, configuration management, test, and release management. Quality
Assurance will plan specific audits and evaluations for ongoing and maintenance tasks or
identify QA schedule-related tasks based on the program schedule. More detailed information
regarding the Quality Assurance organization, its structure, responsibilities, activities and
processes can be found in the SQAP (104-EMD-001).

 4-15 302-EMD-001

This page intentionally left blank.

 4-16 302-EMD-001

5. Catalog of Services

EMD development services are summarized in Table 5-1. EMD offers a range of requirement,
development, integration, and test approaches that can be combined in various ways to achieve
cost-effective deployment of new capabilities. The services support development of new
components or capabilities by the EMD contractor as well as other NASA stakeholders.
The services listed below are described in more detail in Section 6, Software Development
Process, and Section 7, Corrective Action Process/Non-Conformance Reports.

Table 5-1. System Development Services enable cost-effective deployment of
new capabilities (1 of 2)

Service Description When to Use
Requirements Definition Service
Provides SEIT services to coordinate hardware or
software requirements definition across all stakeholders.
Operation concept, requirements, and verification criteria
are captured using the “Ticket” process. See
Requirements Definition and Management below.

Medium to large capabilities developed by EMD
contractor or community-developed capabilities where
assistance in formal requirements capture is desired.
Also used for interface definition or standards
compliance activities where formal testing is to be done.

Requirements Management Service
Incorporates new requirements into the verification
database (VDB) and tracks verification status. See
Section 6.2.1.

All EMD contractor developed capabilities where
Tickets were generated. Optionally, for community-
developed capabilities where requirements tracking is
desired.

Operations Support Software (OSS) Development Service
Perform development using a streamlined development
process that relaxes requirements for formal
documentation and formal verification. See Section
6.1.3.

Any non-core SDPS capability.

Incremental Development Service
Perform development using an iterative process that
includes a series of prototype or incremental deliveries of
a capability to a DAAC or SIT. See Section 6.1.2.

Capabilities where requirements are not well known or
where a capability could have significant operational
impact and early feedback is warranted.

Formal Development Service
Perform development using a waterfall process that
includes formal peer reviews at preliminary design,
detailed design, and code and unit test. Formal
documentation is produced and formal verification is
performed. See Section 6.1.1

Capabilities that involve modification of core SDPS
functions. Other capabilities where rigorous design,
development, documentation, and formal verification is
required.

COTS Software Procurement, Integration, and Maintenance Service
Perform procurement of new or additional COTS
software licenses. Integrate COTS software products
with existing hardware or software components. Perform
COTS software upgrades when necessary and
coordinate defect resolution with COTS vendors. See
Section 8.

Any EMD contractor developed capabilities that are fully
or partially implemented with COTS software products.
Any community-developed capabilities where it is
desirable to take advantage of the EMD contractor’s
buying power or where centralized COTS integration is
beneficial.

 5-1 302-EMD-001

Table 5-1. System Development Services enable cost-effective deployment of
new capabilities (2 of 2)

Service Description When to Use
Integration Service
Perform integration of a new or enhanced capability with
other SDPS components. See Section 6.8.

Any EMD contractor developed capabilities. Any
community developed capabilities where it is desired to
do a single integration rather than have each DAAC
integrate.

Regression Testing Service
Perform regression testing of a capability against SDPS
to ensure that all SDPS functions operate correctly. If
functional verification of capability was performed then
regression test will also ensure the capability operates
correctly. See Section 6.8.1.

Any EMD contractor developed capabilities. Any
community developed capabilities where it is desired to
do a single regression test rather than have each DAAC
do regression testing.

Functional Verification Service
Develop and execute test procedures to verify that a
capability functions correctly. Optionally, conduct formal
verification in conjunction with Government designated
witnesses. See Section 6.8.3.

Any EMD contractor developed capabilities. Any
community developed capabilities where it is desired to
perform an external functional verification before
deployment.

Performance Verification Service
Develop and execute test procedures to verify that a
capability meets performance and stability requirements
under realistic SDPS workloads. See Section 6.8.2.

Any EMD contractor developed capabilities that are
performance critical. Any community developed
capabilities that are performance critical.

Configuration Management and Deployment Service
Baseline and deploy a new capability. Test installation
and transition procedures. See section 6.9.

Any EMD contractor developed capabilities. Any
community developed capabilities where centralized
configuration management and deployment is desired.

Training Service
Provide installation, transition, and operations training for
a new capability. This includes developing or procuring
training materials and delivering training via training
classes, train-the-trainer, or computer-based training.
See Section 6.9.5.

Any EMD contractor or community-developed capability
that requires instruction to be used effectively.

MR Tracking Service
Coordinate collection, prioritization, and disposition of
modification requests against a capability. See Section
7.1.

All EMD contractor developed capabilities. Any
community developed capabilities where it is desired to
a have a central coordination point for resolution of
problems or enhancement requests.

Defect Resolution Service
Provide corrective maintenance for a capability. See
sections 7.2.

All EMD contractor developed capabilities. Any
community developed capability where it is desired to
use EMD resources for defect resolution.

 5-2 302-EMD-001

6. Software Development Process

Figure 6-1 summarizes the software development activities of a typical capability and the
artifacts produced from each stage. The activities are at the top of the bars and the artifacts below
the bars. These peer reviews are required for software fixes and new capabilities exceeding
SLOC thresholds as specified in the EMD Peer Review Process PI. Each phase contains a peer
review (the milestone in the figure) of the outputs and a workoff period. The workoff period is
where the defects from the peer review are resolved, resulting in improved artifacts.

Requirements
Review / Workoff

Preliminary Design,
Inspection, Workoff

Detailed Design,
Inspection, Workoff

Code,
CUT Inspection, Workoff

Unit Test Preparation,
Unit Test Execution

Pre-integration,
Merge,
EDF Integration

.Sitemap updates
Use Cases
Class Diagrams
Sequence Diagrams
Integration Test Plan
DID 305 Updates
DID 313 Updates
DID 609 Updates

Preliminary Design
Artifacts

and

PDL or State
 Transition
 Diagrams
Integration Test
 Procedures
Unit Test Plans
DID 311 Updates

L4 Requirements
L3 to L4 Traces

Updates to Design
 Artifacts

and

Code
Unit Test Procedures

Updates to
Artifacts

and

Unit Test Results

Updates to
Artifacts

and

Merge Form
Integration Test
 Results

Figure 6-1. Development Tasks and Artifacts

6.1 Development Life-Cycle Approaches
Software development is driven either by the requirement to add a new capability (by virtue of a
new EMD task order), or an enhancement or fix in existing operational code. In either case, the
development organization has available to it several alternative software development
approaches depending on the nature of the new capability, enhancement, or fix.
Three approaches are available Formal, Incremental and Operations Support Software (OSS).
OSS is subject to a relaxed set of rules governing software development that are detailed in
Section 6.1.3. Incremental and Formal development order their activities in a different manner,
but both approaches are ultimately governed by the standard set of requirements for software
development that are incorporated in Section 6 of this document.

 6-1 302-EMD-001

These approaches support development of new components or capabilities by the EMD
contractor as well as other NASA stakeholders. The determination of the approach depends
upon the nature of the software requested.

6.1.1 Formal Development
This is a traditional waterfall development methodology that incorporates a peer review process
after preliminary design, detailed design, and code and unit test as depicted in Figure 6-1.
Formal documentation is produced and formal verification is performed. Each phase of the
development (requirements, preliminary design, detailed design, code, unit test, and integration)
consists of an activity, followed by a peer review and a work-off period for any issues discovered
during the peer review. Each of the phases has a set of required artifacts that are specified in
Development Program Instructions. All of the activities shown are scheduled and maintained in
Primavera as part of the overall system schedule.
This approach should be typically used for capabilities that involve significant modification of
core SDPS functions, or where rigorous design, development, documentation, and formal
verification are required. Test procedures are developed based on the Ticket acceptance criteria.
Formal verification is performed using test procedures that are developed from Ticket acceptance
criteria and approved by NASA. Design, test, and operations documentation (DID 305, 313, 311,
and 609) is produced in accordance with EMD-EDP-23, ECS SDPS Documentation Package.

6.1.2 Incremental Development
This is a development approach using an iterative process that includes a series of prototype or
incremental deliveries of a capability to a DAAC or SIT. It can be utilized for capabilities and
enhancements where requirements are not well known or where a capability could have
significant operational impact and early feedback is warranted. The approach is intended to
reduce the risk of substantial rework on software that may have significant operational impact at
the DAACs, but this impact was difficult to assess during requirements and design peer reviews.
In this process, a subset of requirements is selected for initial design and implementation. The
initial implementation is then deployed as a prototype to a pathfinder DAAC that has agreed to
participate in early evaluation and feedback. The feedback is incorporated into the next design
and implementation cycle, which improves the previous implementation and adds more
requirements. Another prototype is deployed and more feedback is provided. This process
continues until all requirements have been implemented. Each implementation cycle is typically
short (2 to 3 months) with a 1-month evaluation period.
While the requirements and development standards are relaxed for the interim prototype
development, the product ultimately delivered to the DAACs must be subjected to, and governed
by, the software process requirements detailed in this document, including appropriate peer
reviews, testing, and documentation.

6.1.3 OSS Development
This is a streamlined development methodology that relaxes the normal requirements for peer
reviews, formal acceptance test, and the comprehensive documentation required by EMD-EDP-
23. Typically, it is used for the development of scripts, Web-based applications, database
applications, or stand-alone programs that extend SDPS functional capabilities or improve SDPS

 6-2 302-EMD-001

operability by automating workarounds, routine maintenance tasks, system monitoring, or
metrics collection. OSS components are standalone components that interface with SDPS by
accessing SDPS databases, logs, external interfaces, or application program interfaces. Raytheon
provides CM support for externally developed operational support software (OSS) components.
Three types of OSS components will be supported:

• Type 1 OSS components help automate EMD operations procedures (e.g., a SDSRV
client driver that is used to support routine maintenance and recovery procedures).
These components may be developed either by EMD or non-EMD organizations
(e.g., non-EMD staff at the DAACs, NASA support contractors) and the operation of
these components falls within the current scope of DAAC operations.

• Type 2 OSS components implement non-mission critical EMD Level 3 requirements
(e.g., Whazzup). These components are developed by EMD using an operational
prototyping process that relaxes requirements for documentation and formal
verification that are not necessary or very cost-effective for this type of software. Use
of this process to develop components that satisfy Level 3 requirements requires
NASA approval. Operation of these components falls within the current scope of
DAAC operations.

• Type 3 OSS components extend EMD requirements (e.g., EDGRS, QA MUT). EMD
or non-EMD organizations may develop these components, however, EMD
involvement in the development or operation of these components would require a
CCR. Either NASA or Raytheon may identify a CCR as an OSS candidate and if
both parties concur, the reduced costs associated with OSS development and
maintenance will be reflected in the EMD ROM for the CCR.

The following requirements apply to the development of an OSS component:
• The component shall be developed with EMD supported languages and be able to be

built with EMD baseline development tools (e.g., compilers, linkers, and script
languages).

• The component shall be able to be executed with the baseline versions of EMD COTS
(e.g., operating systems, command shells, DBMSs, web servers).

• The component shall be mode aware. That is, the component shall be easily
configured to execute in any EMD mode and an instance of the component shall be
able to be concurrently executed in each EMD mode.

• A component that is intended to meet EMD Level 3 requirements shall undergo the
EMD Peer Review Process.

Component documentation shall be provided as README files, MS Word documents or HTML
pages. The following minimum component documentation shall be provided:

• Component overview and operations concept;
• Release notes;
• Build instructions (if applicable);
• Installation instructions;

 6-3 302-EMD-001

• Design documentation that describes: the purpose of the component and each of its
subcomponents; how the component interfaces with EMD, including specifics on
which database tables, log files, or APIs are used; and

• Component resource requirements, including platform where the component will
execute; disk, memory, and CPU requirements; and types and frequency of accesses
to EMD databases, log files or Application Programming Interfaces (APIs).

The component and subsequent updates shall be delivered to EMD in a specified directory
structure in order to facilitate incorporation into the CM system. All necessary scripts to build,
install, and deliver the component shall be provided by the developer.
A CCR is required to add a new OSS component to the EMD baseline. The Science and
Development CCB will draw on EMD SEIT services, as necessary, to evaluate system impacts
of executing OSS components within an EMD configuration.
Developers of OSS components that interface with EMD APIs will be required to access EMD
API libraries through ClearCase views. The EMD Merge process will be required to incorporate
these components into the EMD baseline.
OSS components are not subject to formal verification. It is the responsibility of the developing
or maintaining organization to test new or updated OSS components prior to merging them into
the baseline. It is the DAAC's responsibility to test OSS components after installation at the
DAAC. EMD is responsible for maintaining OSS components developed by EMD staff. EMD
is responsible for coordinating the maintenance of OSS components developed by non-EMD
organizations. OSS component defects and enhancement requests will be managed using the
existing EMD Trouble Ticket, NCR, Deployment IPT, and Priority Board processes.
Maintenance of EMD-developed OSS components will typically be performed by the EMD
organization that originally developed the component (e.g., DAAC, Test, and Science Office).
In order to reduce cost, a standing maintenance group will not be created for OSS components.
Staff will be assigned to fix NCRs or make enhancements on an as needed basis, subject to
current project priorities. Thus, turnaround time on NCR fixes and enhancements may vary. In
the case where an OSS component was developed by a non-EMD organization, the Trouble
Ticket or enhancement request will be forwarded by the SEIT for action.

6.2 Systems requirements development and management
The Functional and Performance Requirements Specifications (F&PRS) contains all of the L3
requirements that are to be maintained by EMD. Interface Requirements Documents and
Interface Control Documents provide the interface requirements and specifications for EMD.
The Verification Database (VDB) contains the L3 and Interface Requirements Document (IRD)
requirements that have been decomposed and allocated to L4 requirements specific to EMD
subsystem components. New capabilities can either add L3, IRD or L4 requirements, which
require subsequent allocation and decomposition into components for design and
implementation. The following requirement development process is described in the
Requirements Management PI, and outlines how new capabilities are allocated to requirements.
Initially, SEIT allocates L3 requirements to architectural components including hardware
configuration items and software configuration items, maps IRDs to L3s, and develops

 6-4 302-EMD-001

operations concepts. Then, SEIT performs a detailed requirement analysis that includes working
with Development to derive L4 requirements from the current L3 requirements. These L4
requirements are mapped to the L3s and IRDs requirements. SEIT then generates a set of
verification tickets. These verification tickets are defined to group requirements (L3s, IRDs, and
L4s) for logical testing and establish a complete set of Acceptance Criteria (AC) against which
test cases should be evaluated to verify that these groupings of requirements are satisfied by the
system. Thus, when all of the Acceptance Criteria in a ticket are verified, the ticket and its
associated requirements are considered verified by association.
Peer reviews of the requirement tickets are conducted with stakeholders prior to capturing them
in the Verification Database (VDB). Stakeholders include the representation from the applicable
IPTs and CPTs, including representation from the DAACs. Following closure of action items
taken at the peer review, the ticket is forwarded for final NASA review and approval.
Subsequent to approval by NASA the ticket is baselined in the VDB. Any changes to these
requirements require an approved CCR.

6.2.1 Software requirements management
A Ticket defines a system capability from multiple perspectives. It includes an operations
concept, system requirements, and acceptance criteria. Requirements definition is led by the
SEIT, working closely with all stakeholders. Tickets are defined by an SEIT architect, peer
reviewed by all stakeholders, and approved by NASA. Once approved, the associated
requirements and verification criteria are tracked in the VDB. Throughout the design,
development, integration and test activities, the Ticket serves as the baseline definition for the
capability and ensures all parties are working from the same specification. If requirement
changes must be made during implementation, the SEIT architect will update the ticket, re-
execute the review and approval process, and redistribute the updated specification to all parties.

6.3 Software Architectural/Preliminary Design
During the Preliminary Design phase, a high-level design is generated for each system
capability. The preliminary design includes an almost identical set of design artifacts as detailed
design, but the artifacts describe the design at a higher level.
The Rational Rose analysis and design tool is used to document the object-oriented artifacts of
the design (object diagrams, sequence diagrams, use case diagrams, etc.). The Unified Modeling
Language (UML) is the methodology used on EMD.
High-level descriptions of the artifacts generated during preliminary design are provided below.
These examples are provided only to illustrate the types of artifacts produced during this phase.
The most up-to-date list of preliminary design artifacts is documented in the PI for peer
reviewing design. It is important to note that these artifacts apply to the new capabilities only.
For example, use case diagrams do not exist for all the previous releases of EMD since UML
was not the original methodology used on the program. Use case diagrams will not be produced
for all the previous capabilities, only the new capabilities for a release.

• L4 requirements and their mapping to components of the design.
• HW/SW mapping showing what H/W components the S/W executes on.

 6-5 302-EMD-001

• Object-oriented design artifacts such as: use case diagrams, class diagrams, sequence
diagrams.

• Design deliverable documents: the Segment/Design Specification (305), Internal ICD
(313), and Operators Tools Manual (609).

• Integration Test Plans
• SLOC and resource estimates. This is revised from the original estimates in order to

review the feasibility of the implementation schedule.
Peer reviews are conducted to validate allocation of Level 4 requirements to the design
components and to validate the overall high-level design itself. Potential candidates for software
reuse are explored during this phase. The successful completion of the preliminary design peer
review and the correction of all defects signify the completion of the preliminary design for that
capability. The detailed design phase for that capability then begins.

6.4 Software Detailed Design
During the Detailed Design phase, a detailed "code-to" design is performed based on the
preliminary design approved during the preliminary design peer review. In addition to the list of
preliminary design artifacts, the following artifacts are generated. The most up-to-date list of
detailed design artifacts is located in the PI for the design peer reviews.

• Program Design Language (PDL) to describe the complex algorithms of methods.
Guidelines for which methods require PDL are included in the PIs.

• State Transition diagrams can be developed as an alternative to the PDL.
• Fully populated object-oriented design artifacts. At preliminary design the

object-oriented artifacts are at a high-level. At this stage, they are fully defined. For
example, the class diagrams will include all classes with all attributes and their data
types and all methods with full signatures.

• Updates to the Database Design and Database Schema Specifications (311)
• Integration Procedures are produced providing detailed steps on how to integrate the

final software capability. These Integration Procedures are incorporated in the
Acceptance Test Procedures by the Test and Integration Team.

Peer reviews are conducted to validate the detailed design of the capability. After completion of
all the defects identified during the peer review, the detailed design phase is complete and
implementation can begin.

6.5 Software Documentation
During the preliminary and detailed design phase, the software deliverables referenced in
Table 6-1 are generated. These deliverables will consist of redlines or change pages of the
existing documents. After implementation and integration, these redlines are incorporated into a
full document set of “as-built” documentation, and also comprise a portion of the EMD-EDP23
CDRL.

 6-6 302-EMD-001

Table 6-1. Software Design Documentation
Document # Document Name Description
305/DV2 Segment/Design Specification Provides details on the context and design

of CSCIs, at the Unix process level. In
addition, information about libraries and
classes are provided for pointers into the
code.

313/DV2 Internal ICDs Provides details of interfaces between
CSCIs including protocol information.
Scenarios are used to illustrate interfaces.
Tables provide high-level information about
the interfaces such as whether they are
remote procedure call interfaces or low-
level socket calls.

609/DV2 Operations Tools Manuals Provides details of operator tools (the
graphical user interfaces). Each operator
tool is explained without regard to the
procedures being operated. Other
documents discuss the procedures used to
perform functions of an operator.

311/DV2 Database Design Specification Provides information about the database
tables, columns, relationships, indexes,
etc. Includes everything associated with
the physical implementation of databases
in the system.

6.6 Software Code and Unit Test
During software coding, classes are coded and a clean compilation produced. Software
Engineers follow coding standards and naming conventions PIs during this process. A different
coding standard is provided for each language used on EMD. Developers use the Unit Test Plan
and Execution PI to develop a set of step-by step unit test procedure to verify that the
requirements are satisfied. Code & Unit Test Peer Reviews and artifacts are described in the
Code and Unit Test Peer Reviews WI.
After the code is peer reviewed and the defects from the peer review resolved, the code is
merged to the baseline. The merge process is documented in the Merge Process PI, but is
summarized here at a high-level.

• A merge request is submitted to the Software Turnover Tracking System (STTS)
upon completion of the unit test.

• The merge request is discussed at a meeting with all the subsystems represented
• If the merge request is complete and the integration lab is ready to integrate the

functionality, the merge is approved.

 6-7 302-EMD-001

• Upon approval, the software developer responsible for the code, uses the
configuration management tool ClearCase to “merge” the code to the appropriate
software release baseline.

The “merge” of the code to the appropriate release baseline signifies the end of the
implementation phase and the beginning of the integration phase. The software is built by SCM
and staged to an area within ClearCase where the integration lab can receive it.

6.7 Software Integration and Test
Custom Code Maintenance is responsible for integrating the software into a working software
system, through the execution of integration procedures. The Software Integration and Test Lab
(SWIT) oversees the integration. Problems with the software are resolved through an iterative
approach of writing NCRs, fixing them, merging them to the baseline, and updating verifying the
NCR fixes. The NCRs that are written are considered “informal” NCRs since they are found
internally. The software development project instruction for NCRs defines the process for these
NCRs from the time of submittal through resolution including the definition of the severity of the
NCRs.
When all the severity 1 and 2 NCRs have been resolved for a particular integration procedure, a
formal run is executed. SWIT oversees the procedure execution. Quality Assurance, SEIT and
Test (SIT) are invited to attend. The results are documented on a test execution form. Only non-
critical NCRs can exist in order for the integration procedure to be considered a successful
execution. These non-critical NCRs are recorded in the NCR database and on the test execution
form. The test execution form is saved in a test execution folder. When all of the required
integration procedures for a release have been successfully executed, a System Integration
Readiness Review (SIRR) is conducted. The SIRR will ensure that the software tested meets
the corresponding Level 4 requirements, and the integration test documentation is complete.
SWIT provides direction to SCM to generate a code baseline and tar file(s) of executables prior
to the meeting. System Integration and Test (SIT) determines the readiness of the product based
on the items supplied by SWIT.

6.8 Testing Approaches
The EMD team uses a multi-layered approach to testing; the type or level of testing is scaled to
match the type of software delivery. The EMD deliveries include: Engineering Software (ES),
Test Executable (TE), Patch, and Release. Delivery mechanisms for each of these software
deliveries is discussed in section 6.9 Deployment Options.

6.8.1 Regression/Fault Recovery Test
The purpose of Regression Testing and Fault Recovery Testing is to exercise the major functions
of EMD to provide confidence that the addition or modification of custom or COTS software
does not adversely affect the behavior of unmodified code. Fault Recovery testing ensures that
EMD software responds properly to server outages and other anomalies under various
conditions. The Regression Test Plan provides an overview of the methodology used for the
selection, development, and execution of Regression Test activities.

 6-8 302-EMD-001

Regression Test activities are based on normal production scenarios that will exercise EMD
functionality. These activities tailored to each facility and contain the following:

• Test Checklist - The purpose of Test Checklists is to provide a list of functional system
threads for each subsystem

• Representative sample of tests that will exercise software functions
• Additional tests that focus on software functions likely to be affected by a new

release/update
• Tests focusing on software components that have changed

The regression activities are based on the functional threads found in the checklist. These
threads will compose a scenario beginning with ingest, archive, and production, and ending with
search, order, and distribution. This scenario is designed to test the basic functionality of the
system after a release or patch is installed. By running this test each time, expected results form
a baseline for future regression testing of the system. In addition to the Insertion-Production-
Retrieval scenario, several other threads will be developed based on related functions not tested
in the core scenario. These threads will be tested only if the new functionality may affect it.
Finally, new functions that are delivered with each new drop or patch will be analyzed, and a
determination will be made as to which components could be affected by the new software.
Existing regression test cases will be updated to include the new functionality.
Regression testing will be performed after each new software release. Regression testing will
also be performed at the DAACs after installation and checkout of the S/W after CSR. These
regression tests will be tailored to include test cases that exercise specific capabilities of interest
to the DAAC, in addition to the general capabilities of the software.

6.8.2 Performance Verification Testing
The Performance Verification Center (PVC) was established to test the system under a load
equivalent to the load that will be present during operations. Special test procedures are defined
to test the performance and stability of the system under operations loads. Parallel to the system
being tested against the functional requirements in the VATC, the system will be tested against
performance criteria in the PVC. NCRs are generated for performance issues just as they are
written for functionality issues. Patches are applied and the performance regression tested until
the release performs satisfactorily in order to deploy. This must be accomplished prior to the
CSR of a release.
Performance verification on system-wide releases typically consist of executing at least two 24
hour sustained operation tests using workloads that approximate the required loads for the
release deployment timeframe. They are normally preceded by 24 hour dry runs intended to
allow test engineers to resolve problems with scenario execution and configuration. These tests
will be self-contained and not use external interfaces. The success criteria will be the
demonstrated ability of the system to execute each workload within a 24-hour period.
For a typical release, GSFC and EDC DAAC workloads have been selected since they have the
largest throughput rates. The workload specification has been derived from the SOW and
F&PRS requirements for mission support, capacity phasing, and catch-up rates. The workloads
use granule sizes, granule counts and PGE execution frequencies as defined in the EMD

 6-9 302-EMD-001

technical baseline. Workload specifications are periodically updated to reflect more closely
typical DAAC loads. At its discretion, EMD will use synthetic data/PGEs, real data/PGEs, or a
combination to implement the workload.
The PVC often cannot provide sufficient capacity to fully test performance in all areas. The
likely areas of reduced capacity are:

• Fewer science processor CPU’s and processing disks than the largest DAAC;
• Fewer silos and archive tape drives than the largest DAAC; and
• Fewer physical media distribution devices than the largest DAAC.

In this case, the workload specification will be adjusted to be consistent with the PVC hardware
and network capacity. For example, PGE execution times may be shortened to permit execution
of full processing chains on a smaller number of CPU's. This approach will permit verification
of the system's ability to plan and schedule the required number of PGEs per day on a smaller
science processor configuration than would be required if baseline PGE execution times were
used. Any changes required to the workload specification will be identified in an update to this
document.
In order to reduce hardware, test development and execution costs, performance verification of
secondary and/or low rate functions will not be performed. These functions include: failure
recovery, failover, user registration; user profile update; user profile replication; user login; DAR
submit; DAR status; directory search; GDS gateway requests; expedited data processing and
distribution; ancillary data ingest from minor sources; and operator functions not related to core
ingest, archive, production, and distribution.

6.8.3 Acceptance Test
At the completion of the installation and checkout of a release, a Test Readiness Review (TRR)
is held. The purpose of the TRR is to assess the readiness for the start of acceptance tests. The
problems found in installation and checkout are assessed as well as the readiness of the
acceptance test procedures. The pre-installation serves as a pathfinder for the installation of the
formal delivery occurring after CSR.
Acceptance testing consists of executing operational scenarios on the system. Acceptance test
procedures are developed during design and implementation, debugged during integration, and
approved by SED and the customer. The System Verification group, to the maximum extent
possible, establishes representative site configurations within the VATC or PVC to verify the
site-unique testing to be performed in the field.
After TRR, the System Integration and Test group begins to execute the acceptance test
procedures. Each procedure is dry run first. After successful dry runs of the procedure, a formal
run is scheduled with IV&V and the customer. Quality Assurance also witnesses formal runs of
the tests on a sampling basis. Upon completion of the full set of acceptance tests, a Consent to
Ship (CSR) review is held and the software is shipped and installed in the field (the DAACs).
Problems found during acceptance testing are documented in NCRs. The Custom Code
Maintenance IPT resolves the NCRs and supplies patches to the release as requested by the SIT
group. Refer to section 7 of this document for more discussion on how NCRs are resolved.

 6-10 302-EMD-001

6.9 Deployment Options
The Raytheon Team understands from its ECS experience that delivery plans need to be flexible
and clearly communicated. The Raytheon Deployment IPT will communicate with all
stakeholders about the delivery plans for all system changes. This communication is provided via
teleconferences, e-mail, and the Monthly Patch Plan. The Deployment IPT (DPT) briefs status
updates to deployment plans during the MRB; longer patch planning sessions with the DAACs
are held periodically via teleconference. Delivery planning and distribution notices are sent to a
mailing list of deployment stakeholders maintained by the DPT. Finally, all deployment plans
are documented in the Monthly Patch Plan (MPP), which provides a 3-month look-ahead
schedule for all deliveries to the field; the MPP is updated weekly (despite its name) in order to
keep it current with changes in the Priority List and DAAC needs. The EMD program will use a
Priority List to determine work assignments. Section 7 details how the Priority List is derived.
The Raytheon Team provides a flexible approach toward SDPS custom software deliveries that
provide small, timely fixes for urgent problems and larger subsystem roll-up patches for the
delivery of less time critical fixes. Full system deliveries are driven by integration activities that
require the establishment of a new maintenance baseline.

6.9.1 Engineering Software
Engineering software is software delivered to a DAAC in response to an emergency. It is only
provided at the specific request of the DAAC. The goal of engineering software is to provide
mitigation of a critical problem in DAAC operations within hours of the onset of the problem.
Engineering software may be delivered at any time of the day or day of the week. Engineering
software is built in a developer’s view from source code that is not yet merged to the baseline
and typically only unit tested by the developer. Our goal within EMD sustaining engineering
will be to merge corresponding fixes (tested and approved) to the appropriate baseline within 48
hours of sending the engineering software. The Raytheon Team will continue to use a custom
ClearCase tool developed under the ECS contract that controls and documents the delivery of
engineering software to the field. This tool, accessible only by senior developers (subsystem
leads) who are authorized to send engineering software, captures and documents what
engineering software has been sent. Engineering Software Delivery instructions are defined in
the Engineering Software Delivery PI.

6.9.2 Test Executables
TEs are software deliveries designed to fix a specific problem with the smallest possible delivery
footprint. The footprint of a change is the number of delivered components required to
implement the change. The goal of a TE is to provide a fix for an urgent problem as soon as it is
available (possibly before final, definitive testing is completed), in a form that can be promoted
into operations by the DAAC as quickly as possible. TEs are also only provided at the specific
request of the DAAC. TEs are normally delivered during the standard work week, but can be
built and delivered during off hours for especially urgent problems. TEs are delivered from the
controlled baseline (after a merge and build), either from the maintenance baseline or from an
Emergency Bug Fix (EBF) branch. TEs are delivered under a configuration change request
(CCR) routed through the EMD Science and Development CCB, in tar files prepared by software
CM. Software CM uses SDPS custom tools to send the TE tar files, document the receipt of the

 6-11 302-EMD-001

delivery by each site, and distribute all of the technical data (NCR lists and installation
instructions) to all interested parties. TEs are installed and tested by the test group in the test
environment (VATC and/or PVC), but this testing may be done in parallel with the delivery to
the DAAC depending on the urgency of the request. Under EMD, the delivery of TEs will be
planned and managed on a daily basis by the lead of the DPT. The Custom Software Delivery PI
governs the delivery of Test Executables as well as Patches.

6.9.3 Patches
Patches are larger software deliveries, usually covering an entire SDPS subsystem. The goal of a
patch is to deliver all of the fixes that have been applied to the maintenance baseline for an entire
component or subsystem. Sometimes the fix to a problem will require the simultaneous delivery
and installation of components from multiple SDPS subsystems; when this happens, multiple
subsystem patches are generated, tested, and delivered as a group. Patch deliveries are planned
and scheduled by the Deployment IPT, taking into account the program priority list, the list of
program mission milestones, development progress in merging fixes for specific problems, and
inter-relationships between fixes among subsystems. Under EMD, we will provide a subsystem
patch for each major SDPS subsystem every 6 to 8 weeks. Patch delivery follows a rigorous
process. The Software Integration and Test Team sends a request to software CM to build tar
files for the patch, identifies the NCRs fixed in the patch, and generates draft installation
instructions. The test group tests the installation of the patch in the PVC or the VATC, providing
redlines to the installation instructions as required, and verifies the NCRs fixed in the patch.
Additional functional regression testing is performed as required. When testing is completed, the
patch is presented at a pre-ship review by the DPT. The installation instructions and NCRs are
discussed with the DAACs, including any changes in operational procedures or troubleshooting
methods required by the fixes. A CCR is executed to deliver the software, and software CM uses
SDPS custom tools to send the patch tar files, document the receipt of the delivery by each site,
and distribute the technical data package for the delivery.
New and modified Earth Science Data Types (ESDTs) will be delivered as special, low-overhead
patches. These patches will be specially packaged to be independent from all other subsystem
changes so that they can be installed immediately. Ingest database updates and valid values
updates, if required by the ESDTs, will be delivered with them and will be installable
independent of all other subsystem patches.

6.9.4 Drop/Release
The delivery of the full SDPS system is usually referred to as a drop or a release, and is
accompanied by the transition to a new maintenance baseline. Full system deliveries will be
performed only as necessary to deliver capabilities and upgrades that require changes in a
majority of the subsystems. Extensive regression and performance testing precede full system
deliveries.

6.9.5 Transition/Training
Occasionally, deliveries will require a set of transition activities to be performed (e.g., building
of a database index or updating values in a database table) either before or after installation of
the software. Scripts are provided to perform these activities and are included in the installation

 6-12 302-EMD-001

package along with appropriate instructions. Sometimes full system deliveries require a complex
set of transition activities. When this occurs, a detailed transition plan is developed and the
DAACs are invited to the Landover facility for transition training and hands-on transition
exercises in the VATC or PVC. A pathfinder DAAC is selected to receive an early delivery of
the software. With proactive support from EMD engineers, the pathfinder DAAC will test
installation and transition. Feedback from this exercise is incorporated into installation and
transition instructions prior to deployment to all DAACs.
For new capabilities not requiring the scope of support described above, the primary
development engineer is invited to one of the bi-weekly deployment IPTs to discuss the new
capability.

6.10 Process Variances
In order to diverge from the software development process, a process variance request must be
approved. A project instruction describes the process for this and the signature approval
authorities. This provides a mechanism to document and heighten awareness within the project
when a process does not make sense for a particular instance. Process variances also provide a
means to determine process improvements. If process variances are frequently being approved
for the same part of the process, then it may be time to change the process.
For example, an NCR fix that is stopping all archival of a particular kind of data at one DAAC
has a 225 SLOC change. The peer review process requires a three-day inspection notification to
peer review the code change. A process variance request could be approved to reduce the three
day inspection notice to one day. An alternative process variance request could request to use the
walkthrough method instead of the inspection method, which only requires a one day notice.

 6-13 302-EMD-001

This page intentionally left blank.

 6-14 302-EMD-001

7. Corrective Action Process/Non-Conformance
Reports (NCR)

The EMD Program uses NCRs to document system problems and their resolution. Each NCR
contains detailed information on the problem, including but not limited to, the problem
description, problem submitter, where the problem was found, the severity of the problem, and
the priority with which the problem should be fixed. In addition, the NCR contains information
provided by the developer, including but not limited to, the status of the fix (e.g., under analysis,
merged, in test), the estimated size of the fix, the estimated merge date, test information, and so
on.

7.1 Prioritization of NCRs
To ensure that all DAACs’ most important operational issues are addressed, EMD uses a Priority
List to determine which operational issues should be addressed. The Priority Review Board
Process PI details the process that is employed to generate the weekly priority list. At a high
level the process is as follows:

1. The Deployment IPT receives a top priority list from each DAAC and posts them at
http://smc.gsfc.nasa.gov/public_html/ipt/ipt_top10.html.

2. The Operations Deployment IPT Lead or designee receives updates/changes and new
inputs for NCRs found in the operational baseline during internal testing (VATC, PVC).
Inputs may also be submitted by the Custom Code leads, Science Office (new or updated
ESDTs) and SEIT. Inputs can be received from various meetings (i.e., the Daily Merge
meeting) and via email.
3. Using various factors as detailed below, the Operations Deployment IPT lead or
designee generates the Priority list and posts it on the web site above.

• Include the top five NCRs from each DAAC.
• Include the top five NCRs found during the development and testing phases in the

EDF
• Include other NCRs as directed by NASA and Systems Engineering.

7.2 NCR Process
The NCR process is detailed in the Development Planning and Tracking of Operational NCRs
PI. At a very high level the process is as follows:

1. DAACs submit trouble tickets to the help desk.
2. After trouble tickets are converted into NCRs, they may be prioritized.
3. If an NCR is prioritized, an initial assessment is made of the NCR.
4. A resource is assigned to work on the NCR by the subsystem lead.

 7-1 302-EMD-001

http://smc.gsfc.nasa.gov/public_html/ipt/ipt_top10.html

5. The developer, with the aid of the subsystem lead, analyzes and estimates SLOC, effort
and schedule.

6. If the NCR is a severity 5 (a request for a new capability) and exceeds 80 hours of effort
it is forwarded to SEIT for review; otherwise, the developer proceeds to fix the NCR.

7. Developer and technical lead perform a technical review of proposed merge.
8. Developer submits NCR for merge.
9. The merge form is reviewed at the Daily Merge Meeting.
10. If approved, the developer merges NCR.
11. The developer validates the fix in the EDF.
12. DDTS is updated with Actual SLOC, Effort, and Schedule.
13. Using the Patch Schedule, a tar file is generated for the SIT group.
14. Upon successful testing on the patch, the Deployment IPT delivers the patch to DAACs.

 7-2 302-EMD-001

8. COTS Maintenance/Insertion

The EMD COTS software maintenance technical approach addresses the full COTS product life
cycle. It includes DAAC participation in each phase of the life cycle, and it adapts based on
customer schedule and requirements, risk mitigation, lessons learned feedback, continuous
measurable improvement, and metric analysis. COTS Upgrade Team (CUT) meetings are held
weekly to review COTS software upgrade needs, plans, schedules, and status. Participants
include representatives from engineering and support teams (including Quality, Test, Security
and CM) as well as the customer.
COTS software maintenance encompasses:

• Identification of requirements

• Selection of COTS products to meet requirements

• Upgrade and maintenance of COTS products, driven by factors such as:

- End of Life/End of Support of software versions

- Changes to other COTS software versions, custom code implementations and
hardware platforms

- Product replacement or obsolescence, sometimes caused by vendor acquisitions
and mergers

- Security issues related to COTS products or COTS product implementation

- Problem resolution

• Risk mitigation relating to overall COTS product deliveries for the EMD Project
requirements, schedules and costs

• Retirement or replacement of COTS products because of changes in requirements
and/or technology evolution (technology insertion).

Detailed information on COTS upgrade plans are made available to the DAACs in the following
documentation:

• EMD COTS Deployment Plan (DID335) - provides a long term outlook for COTS
upgrades planned. The plan details the COTS life cycle characteristics identified
above.

• Deployment Patch Plan - provides a monthly update on COTS product schedules and
deliveries.

• COTS Compatibility Matrix - provides a weekly update on the metrics of COTS
products deliveries, including Primavera schedule summaries. Details of issues that
are identified in the upgrade process are also identified on a weekly basis.

The sections that follow describe the key processes, tools, configuration control methods, and
metrics used for performing routine and emergency COTS software maintenance.

 8-1 302-EMD-001

8.1 Key COTS Software Upgrade Processes
COTS software upgrades are carefully selected, timed, and implemented to balance needs, risks,
and costs. Up-front analyses precede controlled integration and regression testing in a variety of
test environments, and deliveries to sites include installation and transition instructions used and
proven at Landover. The upgrade process consists of six phases.

8.1.1 COTS Software Upgrade Analysis Phase
The COTS software upgrade life cycle begins with COTS software upgrade analysis. The COTS
Upgrade Team continually evaluates COTS product vendor changes and assesses product
version improvements, stability, compatibility, and impacts. This phase of the life cycle
addresses:

• Long Range Planning: A COTS Compatibility Matrix is maintained to provide relevant
data for managing the full COTS product life cycle and for mitigating COTS product-
related risks to EMD custom code maintenance. For example, the information in this
database was used to develop the staggered upgrade plan for the major Solaris 8 release,
mitigating risks that might have occurred had all COTS products been upgraded at the
same time.

• Planning: As part of the COTS upgrade life cycle, the COTS Upgrade Team prepares a
planning document with distribution to all stakeholders, including Custom Code and
Operations Deployment teams. This document includes all relevant Compatibility Matrix
information so that issues can be identified and worked at the earliest stage possible.
Action items are assigned and resolved prior to initiating work on the upgrade.

• Bundling: Bundling of COTS productsthe delivery of upgrades to several COTS
software products in a single, integrated packageprovides efficiencies under certain
circumstances. This is most effective when products to be bundled are “related” in some
way and when benefit can be derived by installing and testing them together.

• Technology Refreshment/Insertion: When a major future change in a COTS product is
identified, senior managers are presented evaluations on which to base decisions and
recommendations. These studies help reduce the risks and impacts that can result from
COTS software obsolescence. They also offer opportunities to reduce overall program
maintenance costs. Evaluations consider:

• Cost effectiveness of upgrading the COTS product compared to replacing it with a
different COTS product or with custom code.

• Impact of hardware upgrades on software upgrades and vice versa.

• Impacts of product obsolescence

• Continuity of vendor support for an EMD hardware platform

• If additional licenses or other procurements may be necessary.

The COTS Upgrade Team also coordinates upgrade issues and actions, and acquires the COTS
software media, documentation, required licenses and licensing keys, and supporting software
for upgrades. All COTS software media is controlled via a COTS software library process (see

 8-2 302-EMD-001

Section 4.6.3). COTS software-related custom code modifications are incrementally delivered as
part of custom code software releases that are backward and forward compatible.

8.1.2 Readiness and Planning Phase
Readiness and Planning activities ensure the upgrade can be accomplished successfully within
the required time and with available resources. DAAC participation during planning, through
regular telecons and briefings, ensures consideration of operational impacts.
A key activity in this phase is determining the COTS upgrade strategy, which can be standard or
fast-track. The fast-track process reduces analysis, planning, engineering and/or testing without
reducing quality. The fast-track process tailors standard procedures for COTS products that do
not impact the operational system (e.g., Netscape Communicator or Purify), for products unique
to certain environments, (e.g., AMASS is only available in the PVC and VATC and not the
COTS Evaluation and Software Integration Labs) or when the upgrade is performed at a DAAC
prior to general deployment. In these cases, analysis, engineering and testing in selected
environments is redundant and, therefore, unnecessary to successfully deploy a quality COTS
software product. The standard upgrade strategy is based on the COTS resources needed (e.g.,
integration and test environments), testing needed, complexity of the product, and footprint of
the product in the SDPS system.
Another key activity is determining the transition approach, including data conversion and data
migration requirements, which must be factored into the upgrade strategy. The amount of COTS
testing needed is dependent on the product For example, OS upgrades require extensive testing,
while a Web browser upgrade needs less testing.
Other key elements of this phase include: needs analysis; identification of enhancement and new
capability aspects of the upgrade; commitment of personnel and system resources; task
decomposition, ownership, and completion dates; clearly defined integration, regression,
performance, and fault recovery testing objectives for all environments; and mitigated risks and
dependencies associated with the upgrade. A transition approach is developed in participation
with the DAACs to maximize site upgrade effectiveness and minimize site impacts.
This phase results in an Evaluation Plan, detailed schedule, and internal review of the plan for
completing the upgrade.

8.1.3 COTS Software Engineering Phase
COTS software engineering forms the core of the COTS software upgrade mechanics: design,
modification, verification, and documentation of COTS software configurations and custom code
modifications.
Installation and testing in the COTS Evaluation Lab ensures successful implementation of major
COTS software features and identifies early custom code impacts and solutions, thereby
maximizing downstream implementation, testing, and operations effectiveness. COTS
Evaluation Lab testing also demonstrates that major features of the upgraded COTS software
product work correctly and do not adversely affect SDPS custom code.
After testing in the COTS Evaluation Lab, the responsible engineer prepares a Pre-Ship Review
(PSR) document (EMD-PSR-14). This document contains installation instructions, configuration

 8-3 302-EMD-001

and environment parameters, transition and data migration procedures, test procedures and
results, and any errors (NCRs) that were detected and their solutions.
Next, Software Integration and Test Lab installation and testing ensures successful COTS
software integration with the SDPS custom code. The COTS Software Maintenance and
Infrastructure Support teams collaborate on the best way to install and configure the COTS
software product, paving the way for smooth COTS software integration at the PVC, VATC, and
DAACs. The Custom Code Maintenance team tests the SDPS custom code with the COTS
software upgrade, verifying that the upgrade’s installation and configuration procedures support
new or existing SDPS custom code functionality and that the COTS software features work as
needed.
Upon successful completion of integration testing, the responsible engineer updates the PSR
document, capturing changes to test procedures and results, install instructions, and NCRs and
resolutions, as well as other appropriate documents and training materials.

8.1.4 COTS Software Verification Phase
Formal verification of COTS software is performed in the VATC and PVC to ensure the quality
of the COTS installation and configuration procedures for DAAC-like environments, as well as
full functionality in an operational environment. The Test team conducts tailored, system-level
integration, acceptance, performance, regression, and fault-recovery testing to ensure DAAC
operational functionality, stability and performance. Transition testing and necessary training
with the site ensures operational installation, configuration quality, and minimal DAAC
operational impact. Once again, PSR documentation is updated with changes to test procedures,
test results, install instructions, and NCRs and resolutions.

8.1.5 COTS Software Review and PSR Phase
Following successful verification testing, the Operations Deployment team coordinates a series
of reviews. An internal review of all COTS software upgrade materials verifies quality, accuracy,
completeness, and compliance with approved processes and customer needs. Next, a review with
the customer – the DAAC Walkthrough – provides a forum to discuss aspects of the product
release in detail and to answer any remaining site configuration, upgrade and transition
questions. The PSR is the final review, at which approval of the COTS software upgrade, PSR
documentation, CCR, and baseline changes are received.

8.1.6 COTS Software Deployment Phase
Once the COTS software PSR completes, the Configuration Management team updates the
baseline and distributes the COTS software media and documentation to the sites. The
Operations Deployment and COTS HW and SW Maintenance teams provide customer support
during installation at the sites, ensure the upgrade gets installed in remaining Landover
environments that need them, and collect customer COTS software upgrade lessons learned and
feedback to ensure continued process improvement and customer satisfaction.

8.2 COTS Test Executables (TEs)
DAACs occasionally require delivery of an emergency COTS product upgrade before full
evaluation and testing can be completed. In response to an approved, high severity NCR or

 8-4 302-EMD-001

trouble ticket, the COTS HW and SW Maintenance team obtains the product and coordinates
whatever checkouts and tests the urgency of the fix allows. They then provide the product and
installation instructions to CM for forwarding to the sites under an approved CCR. COTS TEs
are used at risk.

8.3 COTS Problem Resolution
Staff at Landover and support contracts with COTS product providers combines to ensure COTS
product-related problems are resolved. EMD sites or users experiencing problems with COTS
products receive assistance by reporting the problem via EMD trouble ticketing system or via
phone or e-mail to the Landover Help Desk.
Any problem that cannot be resolved by the Help Desk is prioritized in coordination with the
sites and forwarded to Landover’s COTS Maintenance team. If a product defect is the likely
cause, an NCR is generated that can be traced to the trouble ticket. Team members escalate
problems they cannot resolve themselves to the product vendors. Solutions may be a temporary
workaround, patch, or product upgrade.
Progress on COTS product trouble tickets and NCRs is tracked continually. Status and priority
are reviewed with the sites at least weekly using the same process as for custom code.

8.4 COTS Software Tools and Configuration Control Methods
Table 3-1. lists the tools used to support EMD maintenance and development. Key tools for the
COTS software processes are the COTS Compatibility Matrix, Primavera, and ClearCase.
Configuration control methods are described in Section 4. Key CM activities related to COTS
software maintenance and development are the management of COTS software media and
licenses, delivery of software products to the customer, and management of the COTS software
configuration baseline for each facility.

8.5 COTS Software Metrics
Section 4.4 identifies the software metrics in use for EMD. Key metrics for COTS software
activities are: installation NCRs for COTS; patch installation (i.e., the time to install standard
and fast-track COTS software patches into operations); schedule performance; and cost
performance.

 8-5 302-EMD-001

This page intentionally left blank.

 8-6 302-EMD-001

Abbreviations and Acronyms

AI Action Item
API Application Programming Interface
ARB Architecture Review Board
BOE Basis Of Estimate
CCB Configuration Control Board
CCR Configuration Change Request
CDR Critical Design Review
CDRL Contract Data Requirements List
CM Configuration Management
CMM Capability Maturity Model
CMP Configuration Management Plan
COTS Commercial Off-the-shelf
CPT Cross Product Team
CSCI Computer Software Configuration Item
CSR Consent to Ship Review
CUT COTS Upgrade Team
DAAC Distributed Active Archive Center
DCN Document Change Notice
DDTS Data Defect Tracking System
DID Data Item Description
DLOC Delivered Lines Of Code
DMO Data Management Office
DPT Deployment IPT
EBF Emergency Bug Fix
ECS Earth Observing System Data and Information System (EOSDIS) Core System
EDF Engineering Development Facility
EMD EOSDIS Core System (ECS) Maintenance and Development
EOS Earth Observing System
EOSDIS Earth Observing System Data and Information System
ES Engineering Software
ESDT Earth Science Data Type
F&PRS Functional and Performance Requirements Specifications

 AB-1 302-EMD-001

FCA Functional Configuration Audit
GSFC Goddard Space Flight Center
HMDP Hardware Maintenance and Development Plan
IPDS Integrated Product Development System
IPT Integrated Product Team
IRD Interface Requirements Document
IRR Incremental Release Review
IV&V Independent Verification and Validation
LLR Lessons Learned Review
MCMR Monthly Contractor Manpower Report
MPP Monthly Patch Plan
MPR Monthly Progress Report
MR Modification Request
MRB Modification Review Board
NASA National Aeronautics and Space Administration
NCR Non-conformance Report
OSS Operations Support Software
PAR Performance Assurance Requirements
PCA Physical Configuration Audit
PDL Program Design Language
PEB Performance Evaluation Board
PI Project Instruction
PMR Program Management Review
PMT Program Management Team
QA Quality Assurance
QAE Quality Assurance Engineer
RC Risk Coordinator
RI Responsible Individual
RMP Risk Management Plan
RSR Release Status Review
SCM Supply Chain Management
SCA Subcontractor Administrator
SDF Software Development Folder
SDL Software Development Library
SDP Software Development Plan
SDPS Science Data Processing Segment

 AB-2 302-EMD-001

SEIT System Engineering And Integration Team
SEL Software Estimation Lead
SEP System Enhancement Proposal
SEPG Software Engineering Process Group
SIRR System Integration Readiness Review
SIT System Integration and Test
SLOC Source Lines of Code
SMC System Monitoring Center
SMDP Software Maintenance Development Plan
SOIs Software Operating Instructions
SPR Subcontractor Progress Review
SQAP Software Quality Assurance Plan
SRA Site Readiness Assessment
STTS Software Turnover Tracking System
SWIT Software Integration and Test
TE Test Executable
TPR Task Plan Request
TRR Test Readiness Review
UML Unified Modeling Language
VATC Verification And Test Center
VDB Verification Database
VDD Version Description Document
WI Work Instruction

 AB-3 302-EMD-001

 AB-4 302-EMD-001

This page intentionally left blank.

